[Openmp-commits] [openmp] [clang] [llvm] [OpenMP] Rework handling of global ctor/dtors in OpenMP (PR #71739)

Joseph Huber via Openmp-commits openmp-commits at lists.llvm.org
Fri Nov 10 09:38:21 PST 2023


================
@@ -1038,6 +1048,109 @@ struct CUDADeviceTy : public GenericDeviceTy {
   using CUDAStreamManagerTy = GenericDeviceResourceManagerTy<CUDAStreamRef>;
   using CUDAEventManagerTy = GenericDeviceResourceManagerTy<CUDAEventRef>;
 
+  Error callGlobalCtorDtorCommon(GenericPluginTy &Plugin, DeviceImageTy &Image,
+                                 bool IsCtor) {
+    // Perform a quick check for the named kernel in the image. The kernel
+    // should be created by the 'nvptx-lower-ctor-dtor' pass.
+    GenericGlobalHandlerTy &Handler = Plugin.getGlobalHandler();
+    GlobalTy Global(IsCtor ? "nvptx$device$init" : "nvptx$device$fini",
+                    sizeof(void *));
+    if (auto Err = Handler.getGlobalMetadataFromImage(*this, Image, Global)) {
+      consumeError(std::move(Err));
+      return Plugin::success();
+    }
+
+    // The Nvidia backend cannot handle creating the ctor / dtor array
+    // automatically so we must create it ourselves. The backend will emit
+    // several globals that contain function pointers we can call. These are
+    // prefixed with a known name due to Nvidia's lack of section support.
+    const ELF64LEObjectFile *ELFObj =
+        Handler.getOrCreateELFObjectFile(*this, Image);
+    if (!ELFObj)
+      return Plugin::error("Unable to create ELF object for image %p",
+                           Image.getStart());
+
+    // Search for all symbols that contain a constructor or destructor.
+    SmallVector<std::pair<StringRef, uint16_t>> Funcs;
+    for (ELFSymbolRef Sym : ELFObj->symbols()) {
+      auto NameOrErr = Sym.getName();
+      if (!NameOrErr)
+        return NameOrErr.takeError();
+
+      if (!NameOrErr->starts_with(IsCtor ? "__init_array_object_"
+                                         : "__fini_array_object_"))
+        continue;
+
+      uint16_t priority;
+      if (NameOrErr->rsplit('_').second.getAsInteger(10, priority))
+        return Plugin::error("Invalid priority for constructor or destructor");
+
+      Funcs.emplace_back(*NameOrErr, priority);
+    }
+
+    // Sort the created array to be in priority order.
+    llvm::sort(Funcs, [=](auto x, auto y) { return x.second < y.second; });
+
+    // Allocate a buffer to store all of the known constructor / destructor
+    // functions in so we can iterate them on the device.
+    void *Buffer =
+        allocate(Funcs.size() * sizeof(void *), nullptr, TARGET_ALLOC_SHARED);
----------------
jhuber6 wrote:

It's much more convenient than copying over the buffer. `SHARED` in CUDA context would be "migratable" memory without async access AFAIK. So this will most likely just invoke a migration once it's accessed. Unsure if that's slower or faster than waiting on an explicit memcpy. 

https://github.com/llvm/llvm-project/pull/71739


More information about the Openmp-commits mailing list