[Mlir-commits] [mlir] [mlir][linalg] Add pattern to clean unused results after fusion (PR #158627)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Sep 15 05:42:19 PDT 2025
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
Author: Pavel Lipskiy (pavlips)
<details>
<summary>Changes</summary>
In some cases, elementwise fusion can produce ops with multiple results, but only one of them is used in the IR. This makes the IR less readable and prevents additional fusions from being triggered.
This patch adds the `DropRedundantResultsFromGenericOps` pattern to find these outputs and convert them into inputs.
---
Full diff: https://github.com/llvm/llvm-project/pull/158627.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp (+51)
- (modified) mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir (+22-1)
``````````diff
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index 3bd763ea00cd7..aac54327213ac 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -2200,6 +2200,56 @@ struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
}
};
+/// Drops an unused result from an elementwise `linalg.generic` by
+/// reclassifying its tied `outs` operand as an extra input operand.
+struct DropRedundantResultsFromGenericOps
+ : public OpRewritePattern<linalg::GenericOp> {
+ using OpRewritePattern<linalg::GenericOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(linalg::GenericOp op,
+ PatternRewriter &rewriter) const override {
+ if (!linalg::isElementwise(op) || op.getNumResults() < 2U)
+ return failure();
+ // Given that the op has no reductions, there is no need to preserve an
+ // unused result: transform it into an input instead.
+ auto maybeUnusedRes = llvm::find_if(
+ op.getResults(), [](OpResult res) { return res.use_empty(); });
+ if (maybeUnusedRes == op.getResults().end())
+ return failure();
+ OpResult unusedRes = *maybeUnusedRes;
+ const unsigned resIdx = unusedRes.getResultNumber();
+ auto resTypes = llvm::to_vector(op.getResultTypes());
+ resTypes.erase(resTypes.begin() + resIdx);
+ SmallVector<Value> resValues = llvm::to_vector_of<Value>(op.getResults());
+ resValues.erase(resValues.begin() + resIdx);
+ const int64_t numInputs = op.getNumDpsInputs();
+ OpOperand *resOperand = op.getTiedOpOperand(unusedRes);
+ AffineMap map = op.getIndexingMapMatchingResult(unusedRes);
+ const unsigned operandIdx = resOperand->getOperandNumber();
+ // Remove the output operand and add it as an input operand with the same
+ // map.
+ SmallVector<Value> outs(op.getOutputs());
+ outs.erase(outs.begin() + resIdx);
+ SmallVector<Value> ins(op.getInputs());
+ ins.insert(ins.begin() + numInputs, resOperand->get());
+ SmallVector<AffineMap> maps = op.getIndexingMapsArray();
+ maps.erase(maps.begin() + operandIdx);
+ maps.insert(maps.begin() + numInputs, map);
+ rewriter.setInsertionPoint(op);
+ auto newGenericOp = rewriter.create<linalg::GenericOp>(
+ op.getLoc(), TypeRange(resTypes), ins, outs, maps,
+ op.getIteratorTypesArray());
+ op->setDiscardableAttrs(op->getDiscardableAttrDictionary());
+ op.getBody()->getTerminator()->eraseOperands(resIdx);
+ newGenericOp.getRegion().takeBody(op.getBodyRegion());
+ // Replace the remaining results of the old op with the results of the new
+ // op.
+ rewriter.replaceAllUsesWith(resValues, newGenericOp.getResults());
+ // Remove the old op.
+ rewriter.eraseOp(op);
+ return success();
+ }
+};
+
/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
@@ -2262,6 +2312,7 @@ void mlir::linalg::populateElementwiseOpsFusionPatterns(
RemoveOutsDependency>(context);
// Add the patterns that clean up dead operands and results.
populateEraseUnusedOperandsAndResultsPatterns(patterns);
+ patterns.add<DropRedundantResultsFromGenericOps>(context);
}
void mlir::linalg::populateCollapseDimensions(
diff --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index bc55c12c02f29..173ec8a8a5f38 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -1079,4 +1079,25 @@ module {
// CHECK-NOT: linalg.generic
// CHECK: tensor.expand_shape
// CHECK: linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
-// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
\ No newline at end of file
+// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
+
+// -----
+// CHECK-LABEL: @drop_unused_results
+// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]: tensor<64xf32>, [[ARG1:%[a-zA-Z0-9]+]]: tensor<1x56x56x64xf32>
+func.func @drop_unused_results(%arg0: tensor<64xf32>, %arg1: tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> {
+ %cst = arith.constant 3.40282347E+38 : f32
+ %cst_0 = arith.constant 0.000000e+00 : f32
+ // CHECK: [[OUT:%[a-zA-Z0-9]+]] = tensor.empty() : tensor<1x56x56x64xf32>
+ %0 = tensor.empty() : tensor<1x56x56x64xf32>
+ // CHECK: [[RES:%[0-9]+]] = linalg.generic {{.*}} ins([[ARG0]], [[ARG1]] : tensor<64xf32>, tensor<1x56x56x64xf32>) outs([[OUT]] : tensor<1x56x56x64xf32>)
+ %1:2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<64xf32>) outs(%arg1, %0 : tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) {
+ ^bb0(%in: f32, %out: f32, %out_1: f32):
+ %2 = arith.addf %in, %out : f32
+ %3 = arith.minimumf %2, %cst : f32
+ %4 = arith.maximumf %3, %cst_0 : f32
+ linalg.yield %2, %4 : f32, f32
+ } -> (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>)
+ // CHECK: -> tensor<1x56x56x64xf32>
+ // CHECK: return [[RES]] : tensor<1x56x56x64xf32>
+ return %1#1 : tensor<1x56x56x64xf32>
+}
``````````
</details>
https://github.com/llvm/llvm-project/pull/158627
More information about the Mlir-commits
mailing list