[Mlir-commits] [mlir] 86bcd1c - [mlir][Intrange] Fix materializing ShapedType constant values (#158359)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Fri Sep 12 13:53:35 PDT 2025
Author: Jeff Niu
Date: 2025-09-12T13:53:32-07:00
New Revision: 86bcd1c2b256cd6aa5e65e1a54b63f929d616464
URL: https://github.com/llvm/llvm-project/commit/86bcd1c2b256cd6aa5e65e1a54b63f929d616464
DIFF: https://github.com/llvm/llvm-project/commit/86bcd1c2b256cd6aa5e65e1a54b63f929d616464.diff
LOG: [mlir][Intrange] Fix materializing ShapedType constant values (#158359)
When materializing integer ranges of splat tensors or vector as
constants, they should use DenseElementsAttr of the shaped type, not
IntegerAttrs of the element types, since this can violate the invariants
of tensor/vector ops.
Co-authored-by: Jeff Niu <jeffniu at openai.com>
Added:
Modified:
mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
mlir/test/Dialect/Arith/int-range-opts.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp b/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
index e79f6a8aec1cf..70b56ca77b2da 100644
--- a/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
+++ b/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
@@ -26,6 +26,7 @@
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/InferIntRangeInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
+#include "mlir/Support/DebugStringHelper.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
@@ -76,9 +77,17 @@ void IntegerValueRangeLattice::onUpdate(DataFlowSolver *solver) const {
else
dialect = value.getParentBlock()->getParentOp()->getDialect();
- Type type = getElementTypeOrSelf(value);
- solver->propagateIfChanged(
- cv, cv->join(ConstantValue(IntegerAttr::get(type, *constant), dialect)));
+ Attribute cstAttr;
+ if (isa<IntegerType, IndexType>(value.getType())) {
+ cstAttr = IntegerAttr::get(value.getType(), *constant);
+ } else if (auto shapedTy = dyn_cast<ShapedType>(value.getType())) {
+ cstAttr = SplatElementsAttr::get(shapedTy, *constant);
+ } else {
+ llvm::report_fatal_error(
+ Twine("FIXME: Don't know how to create a constant for this type: ") +
+ mlir::debugString(value.getType()));
+ }
+ solver->propagateIfChanged(cv, cv->join(ConstantValue(cstAttr, dialect)));
}
LogicalResult IntegerRangeAnalysis::visitOperation(
diff --git a/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp b/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
index 777ff0ecaa314..2017905587b26 100644
--- a/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
@@ -8,6 +8,7 @@
#include <utility>
+#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Dialect/Arith/Transforms/Passes.h"
@@ -485,6 +486,7 @@ struct IntRangeOptimizationsPass final
MLIRContext *ctx = op->getContext();
DataFlowSolver solver;
solver.load<DeadCodeAnalysis>();
+ solver.load<SparseConstantPropagation>();
solver.load<IntegerRangeAnalysis>();
if (failed(solver.initializeAndRun(op)))
return signalPassFailure();
diff --git a/mlir/test/Dialect/Arith/int-range-opts.mlir b/mlir/test/Dialect/Arith/int-range-opts.mlir
index ea5969a100258..e6e48d30cece5 100644
--- a/mlir/test/Dialect/Arith/int-range-opts.mlir
+++ b/mlir/test/Dialect/Arith/int-range-opts.mlir
@@ -132,3 +132,19 @@ func.func @wraps() -> i8 {
%mod = arith.remsi %val, %c64 : i8
return %mod : i8
}
+
+// -----
+
+// CHECK-LABEL: @analysis_crash
+func.func @analysis_crash(%arg0: i32, %arg1: tensor<128xi1>) -> tensor<128xi64> {
+ %c0_i32 = arith.constant 0 : i32
+ %cst = arith.constant dense<-1> : tensor<128xi32>
+ %splat = tensor.splat %arg0 : tensor<128xi32>
+ %0 = scf.for %arg2 = %c0_i32 to %arg0 step %arg0 iter_args(%arg3 = %splat) -> (tensor<128xi32>) : i32 {
+ scf.yield %arg3 : tensor<128xi32>
+ }
+ %1 = arith.select %arg1, %0#0, %cst : tensor<128xi1>, tensor<128xi32>
+ // Make sure the analysis doesn't crash when materializing the range as a tensor constant.
+ %2 = arith.extsi %1 : tensor<128xi32> to tensor<128xi64>
+ return %2 : tensor<128xi64>
+}
More information about the Mlir-commits
mailing list