[Mlir-commits] [mlir] [mlir][Intrange] Fix materializing ShapedType constant values (PR #158359)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Fri Sep 12 13:27:39 PDT 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Jeff Niu (Mogball)

<details>
<summary>Changes</summary>

When materializing integer ranges of splat tensors or vector as constants, they should use DenseElementsAttr of the shaped type, not IntegerAttrs of the element types, since this can violate the invariants of tensor/vector ops.

---
Full diff: https://github.com/llvm/llvm-project/pull/158359.diff


3 Files Affected:

- (modified) mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp (+12-3) 
- (modified) mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp (+2) 
- (modified) mlir/test/Dialect/Arith/int-range-opts.mlir (+16) 


``````````diff
diff --git a/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp b/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
index e79f6a8aec1cf..70b56ca77b2da 100644
--- a/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
+++ b/mlir/lib/Analysis/DataFlow/IntegerRangeAnalysis.cpp
@@ -26,6 +26,7 @@
 #include "mlir/Interfaces/ControlFlowInterfaces.h"
 #include "mlir/Interfaces/InferIntRangeInterface.h"
 #include "mlir/Interfaces/LoopLikeInterface.h"
+#include "mlir/Support/DebugStringHelper.h"
 #include "mlir/Support/LLVM.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/Support/Casting.h"
@@ -76,9 +77,17 @@ void IntegerValueRangeLattice::onUpdate(DataFlowSolver *solver) const {
   else
     dialect = value.getParentBlock()->getParentOp()->getDialect();
 
-  Type type = getElementTypeOrSelf(value);
-  solver->propagateIfChanged(
-      cv, cv->join(ConstantValue(IntegerAttr::get(type, *constant), dialect)));
+  Attribute cstAttr;
+  if (isa<IntegerType, IndexType>(value.getType())) {
+    cstAttr = IntegerAttr::get(value.getType(), *constant);
+  } else if (auto shapedTy = dyn_cast<ShapedType>(value.getType())) {
+    cstAttr = SplatElementsAttr::get(shapedTy, *constant);
+  } else {
+    llvm::report_fatal_error(
+        Twine("FIXME: Don't know how to create a constant for this type: ") +
+        mlir::debugString(value.getType()));
+  }
+  solver->propagateIfChanged(cv, cv->join(ConstantValue(cstAttr, dialect)));
 }
 
 LogicalResult IntegerRangeAnalysis::visitOperation(
diff --git a/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp b/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
index 777ff0ecaa314..2017905587b26 100644
--- a/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
+++ b/mlir/lib/Dialect/Arith/Transforms/IntRangeOptimizations.cpp
@@ -8,6 +8,7 @@
 
 #include <utility>
 
+#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
 #include "mlir/Analysis/DataFlowFramework.h"
 #include "mlir/Dialect/Arith/Transforms/Passes.h"
 
@@ -485,6 +486,7 @@ struct IntRangeOptimizationsPass final
     MLIRContext *ctx = op->getContext();
     DataFlowSolver solver;
     solver.load<DeadCodeAnalysis>();
+    solver.load<SparseConstantPropagation>();
     solver.load<IntegerRangeAnalysis>();
     if (failed(solver.initializeAndRun(op)))
       return signalPassFailure();
diff --git a/mlir/test/Dialect/Arith/int-range-opts.mlir b/mlir/test/Dialect/Arith/int-range-opts.mlir
index ea5969a100258..e6e48d30cece5 100644
--- a/mlir/test/Dialect/Arith/int-range-opts.mlir
+++ b/mlir/test/Dialect/Arith/int-range-opts.mlir
@@ -132,3 +132,19 @@ func.func @wraps() -> i8 {
   %mod = arith.remsi %val, %c64 : i8
   return %mod : i8
 }
+
+// -----
+
+// CHECK-LABEL: @analysis_crash
+func.func @analysis_crash(%arg0: i32, %arg1: tensor<128xi1>) -> tensor<128xi64> {
+  %c0_i32 = arith.constant 0 : i32
+  %cst = arith.constant dense<-1> : tensor<128xi32>
+  %splat = tensor.splat %arg0 : tensor<128xi32>
+  %0 = scf.for %arg2 = %c0_i32 to %arg0 step %arg0 iter_args(%arg3 = %splat) -> (tensor<128xi32>)  : i32 {
+    scf.yield %arg3 : tensor<128xi32>
+  }
+  %1 = arith.select %arg1, %0#0, %cst : tensor<128xi1>, tensor<128xi32>
+  // Make sure the analysis doesn't crash when materializing the range as a tensor constant.
+  %2 = arith.extsi %1 : tensor<128xi32> to tensor<128xi64>
+  return %2 : tensor<128xi64>
+}

``````````

</details>


https://github.com/llvm/llvm-project/pull/158359


More information about the Mlir-commits mailing list