[Mlir-commits] [mlir] [mlir][xegpu] Add OptimizeTranspose pass. (PR #165483)

Artem Kroviakov llvmlistbot at llvm.org
Thu Oct 30 01:55:21 PDT 2025


================
@@ -0,0 +1,465 @@
+//===- XeGPUOptimizeTranspose.cpp - XeGPU optimize transpose ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/MemRef/IR/MemRef.h"
+#include "mlir/Dialect/SCF/Transforms/Patterns.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
+#include "mlir/Dialect/Utils/StaticValueUtils.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
+#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
+#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
+#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
+#include "mlir/IR/BuiltinAttributeInterfaces.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/OpDefinition.h"
+#include "mlir/IR/Types.h"
+#include "mlir/IR/Value.h"
+#include "mlir/Support/LLVM.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/SmallVector.h"
+#include <algorithm>
+#include <optional>
+
+namespace mlir {
+namespace xegpu {
+#define GEN_PASS_DEF_XEGPUOPTIMIZETRANSPOSE
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
+} // namespace xegpu
+} // namespace mlir
+
+#define DEBUG_TYPE "xegpu-optimize-transpose"
+#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
+
+using namespace mlir;
+
+namespace {
+
+struct Allowed2DShapeRange {
+  int64_t minWidth, maxWidth, minHeight, maxHeight;
+};
+
+/// Helper to get the size range of a 2D block that can be transposed by HW.
+/// TODO: Use uArch to get supported block ranges.
+static Allowed2DShapeRange getTransposableBlockRange(int bitWidth) {
+  switch (bitWidth) {
+  case 32:
+    return {/**min width**/ 1, /**max width**/ 8, /**min height**/ 1,
+            /**max height**/ 32};
+  default:
+    llvm_unreachable("Add support for other element bitwidths");
+  }
+}
+
+/// Get the 2D lane data from a tensor desc type if it exists.
+static std::optional<SmallVector<int64_t>>
+getMaybeLaneData(xegpu::TensorDescType tdescType) {
+  auto layout = tdescType.getLayoutAttr();
+  if (!layout)
+    return std::nullopt;
+  auto laneData = layout.getEffectiveLaneDataAsInt();
+  if (laneData.size() != 2)
+    return std::nullopt;
+  return laneData;
+}
+
+/// Get the 2D lane layout from a tensor desc type if it exists.
+static std::optional<SmallVector<int64_t>>
+getMaybeLaneLayout(xegpu::TensorDescType tdescType) {
+  auto layout = tdescType.getLayoutAttr();
+  if (!layout)
+    return std::nullopt;
+  auto laneLayout = layout.getEffectiveLaneLayoutAsInt();
+  if (laneLayout.size() != 2)
+    return std::nullopt;
+  return laneLayout;
+}
+
+/// A layout can be optimized if its lane layout is transposed (lane[0] != 1 &&
+/// lane[1] == 1), but inner lane data is not equal to [1, 1].
+static bool canBeOptimized(ArrayRef<int64_t> laneLayout,
+                           ArrayRef<int64_t> laneData) {
+  if (laneLayout.size() != 2 || laneData.size() != 2)
+    return false;
+  if (laneLayout[0] == 1 || laneLayout[1] != 1)
+    return false;
+  if (laneData[0] != 1 || laneData[1] == 1)
+    return false;
+  return true;
+}
+
+/// A tensor desc type can be optimized if its element type is less than 32 bits
+/// and its layout can be optimized.
+static bool canBeOptimized(xegpu::TensorDescType tdescType) {
+  // If the dtype is greater or equal to 32 bits, layout must be valid.
+  int elementTyBitwidth = tdescType.getElementType().getIntOrFloatBitWidth();
+  if (elementTyBitwidth >= 32)
+    return false;
+  auto maybeLaneLayout = getMaybeLaneLayout(tdescType);
+  auto maybeLaneData = getMaybeLaneData(tdescType);
+  if (!maybeLaneData || !maybeLaneLayout)
+    return false;
+  return canBeOptimized(*maybeLaneLayout, *maybeLaneData);
+}
+
+/// Check if a tensor desc type can be optimized for transpose, if so return the
+/// new optimized tensor desc type with a valid transpose layout.
+static xegpu::TensorDescType tryOptimize(xegpu::TensorDescType tdescType) {
+  if (!canBeOptimized(tdescType))
+    return tdescType;
+  auto laneData = getMaybeLaneData(tdescType).value();
+  int64_t innerLaneData = laneData[1];
+  int elementTyBitwidth = tdescType.getElementType().getIntOrFloatBitWidth();
+  // Required shape is total shape of the vector result that this tensor desc
+  // must eventually load after adjusting for the new bitwidth and array
+  // length.
+  SmallVector<int64_t> requiredShape(tdescType.getShape());
+  requiredShape.back() =
+      requiredShape.back() * tdescType.getArrayLength() / innerLaneData;
+  int newBitWidth = elementTyBitwidth * innerLaneData;
+  Type newElemTy = IntegerType::get(tdescType.getContext(), newBitWidth);
+  // Supported shape is the max transpose shape that can be supported by
+  // hardware that is less than or equal to required shape.
+  auto supportedHeight = std::min(
+      requiredShape[0], getTransposableBlockRange(newBitWidth).maxHeight);
+  auto supportedWidth = std::min(
+      requiredShape[1], getTransposableBlockRange(newBitWidth).maxWidth);
+  SmallVector<int64_t> supportedShape = {supportedHeight, supportedWidth};
+
+  // Required shape must be multiple of supported shape. Otherwise, we can not
+  // optimize it.
+  // TODO: Supported shape can be adjusted to handle non-multiple cases.
+  if (requiredShape[0] % supportedShape[0] != 0 ||
+      requiredShape[1] % supportedShape[1] != 0)
+    return tdescType;
+
+  xegpu::LayoutAttr newLayout = xegpu::LayoutAttr::get(
+      tdescType.getContext(),
+      tdescType.getLayoutAttr().getLaneLayout().asArrayRef(), {1, 1});
+  // Array length can not be larger than 1 for transpose case.
+  return xegpu::TensorDescType::get(
+      supportedShape, newElemTy, /**array length**/ 1,
+      tdescType.getBoundaryCheck(), tdescType.getMemorySpace(), newLayout);
+}
+
+/// Helper to create a constant index value.
+static Value createConstantIndex(ConversionPatternRewriter &rewriter,
+                                 Location loc, int64_t value) {
+  return arith::ConstantIndexOp::create(rewriter, loc, value).getResult();
+}
+
+/// Helper to convert an OpFoldResult to Value.
+static Value convertToValue(ConversionPatternRewriter &rewriter, Location loc,
+                            OpFoldResult ofr) {
+  std::optional<int64_t> mayBeInt = getConstantIntValue(ofr);
+  if (mayBeInt)
+    return createConstantIndex(rewriter, loc, *mayBeInt);
+  return llvm::cast<Value>(ofr);
+}
+
+/// Helper to divide a Value by a constant integer.
+static Value divideByConstant(ConversionPatternRewriter &rewriter, Location loc,
+                              Value val, int64_t constant) {
+  // If the constant is a power of 2, use right shift for division.
+  if (llvm::isPowerOf2_64(constant)) {
+    int64_t shiftAmount = llvm::Log2_64(constant);
+    return arith::ShRUIOp::create(
+               rewriter, loc, val,
+               createConstantIndex(rewriter, loc, shiftAmount))
+        .getResult();
+  }
+  auto constantOp = createConstantIndex(rewriter, loc, constant);
+  return arith::DivUIOp::create(rewriter, loc, val, constantOp).getResult();
+}
+
+/// This function takes a larger register block `data` and generates multiple
+/// smaller loads (size given by `newTensorDesc`) to fill in the `data` block
+/// starting from `offsets`.
+static Value generateLoads(ConversionPatternRewriter &rewriter,
+                           TypedValue<VectorType> data,
+                           SmallVector<OpFoldResult> offsets,
+                           TypedValue<xegpu::TensorDescType> newTensorDesc,
+                           xegpu::LoadNdOp origLoadOp) {
+  Location loc = data.getLoc();
+  assert(offsets.size() >= 2 && "Expecting at least 2 offsets for 2D LoadNdOp");
+  Value offsetX = convertToValue(rewriter, loc, offsets[offsets.size() - 2]);
+  Value offsetY = convertToValue(rewriter, loc, offsets[offsets.size() - 1]);
+  SmallVector<int64_t> supportedShape(newTensorDesc.getType().getShape());
+  // Compute the ratio between original shape and supported shape. We need to
+  // generate loads in this ratio arrangement.
+  auto shapeRatio = computeShapeRatio(data.getType().getShape(),
+                                      supportedShape)
+                        .value(); // `ratio` must be defined if we reach here.
+  for (int64_t h = 0; h < shapeRatio[0]; ++h) {
+    for (int64_t w = 0; w < shapeRatio[1]; ++w) {
+      int64_t localOffsetX = h * supportedShape[0];
+      int64_t localOffsetY = w * supportedShape[1];
+      Value loadOffsetX = arith::AddIOp::create(
+          rewriter, loc, offsetX,
+          createConstantIndex(rewriter, loc, localOffsetX));
+      Value loadOffsetY = arith::AddIOp::create(
+          rewriter, loc, offsetY,
+          createConstantIndex(rewriter, loc, localOffsetY));
+      auto loadOp = xegpu::LoadNdOp::create(
+          rewriter, loc,
+          VectorType::get(supportedShape, data.getType().getElementType()),
+          newTensorDesc, ArrayRef<OpFoldResult>{loadOffsetX, loadOffsetY},
+          origLoadOp.getPackedAttr(), origLoadOp.getTransposeAttr(),
+          origLoadOp.getL1HintAttr(), origLoadOp.getL2HintAttr(),
+          origLoadOp.getL3HintAttr());
+      // Set the layout for the loadOp.
+      auto layoutAttr = newTensorDesc.getType().getLayoutAttr();
+      xegpu::setDistributeLayoutAttr(loadOp->getOpResult(0), layoutAttr);
+      // Insert the loaded block into the right position in data.
+      auto insertOp = vector::InsertStridedSliceOp::create(
+          rewriter, loc, loadOp.getResult(), data,
+          ArrayRef<int64_t>{localOffsetX, localOffsetY},
+          ArrayRef<int64_t>{1, 1});
+      // InsertOp must have the same layout as newTensorDesc.
+      xegpu::setDistributeLayoutAttr(insertOp->getOpResult(0), layoutAttr);
+      data = insertOp.getResult();
+    }
+  }
+  return data;
+}
+
+/// Checks is a CreateNdDescOp can be optimized for transpose, if so creates a
+/// new CreateNdDescOp with optimized tensor desc type. This involves extracting
+/// the base pointer from the original memory source and adjusting the shape and
+/// strides of the tensor desc to fit with the new optimized transpose layout.
+class XeGPUCreateNdDescOpPattern final
+    : public OpConversionPattern<xegpu::CreateNdDescOp> {
+public:
+  using OpConversionPattern<xegpu::CreateNdDescOp>::OpConversionPattern;
+  LogicalResult
+  matchAndRewrite(xegpu::CreateNdDescOp createNdOp, OpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+    auto tdescTy = createNdOp.getType();
+    auto convertType = tryOptimize(tdescTy);
+    if (convertType == tdescTy)
+      return failure();
+    auto strides = createNdOp.getMixedStrides();
+    auto maybeConstInnerStride = getConstantIntValue(strides.back());
+    // Only row-major memrefs are expected for now.
+    if (!maybeConstInnerStride || *maybeConstInnerStride != 1)
+      return failure();
+    Value source = createNdOp.getSource();
+    auto optionalLaneData = getMaybeLaneData(tdescTy);
+    assert(optionalLaneData && "Expected 2D lane data");
+    auto laneData = optionalLaneData.value();
+    int64_t innerLaneData = laneData[1];
+    auto memrefType = dyn_cast<MemRefType>(source.getType());
+    // Inner dimension of the shape must be adjusted based on innerLaneData.
+    SmallVector<OpFoldResult> modifiedShape(createNdOp.getMixedSizes());
+    modifiedShape.back() = divideByConstant(
+        rewriter, createNdOp.getLoc(),
+        convertToValue(rewriter, createNdOp.getLoc(), modifiedShape.back()),
+        innerLaneData);
+    // Similarly, second to last stride must be adjusted.
+    assert(strides.size() >= 2 &&
+           "Expected at least 2 strides for CreateNdDescOp");
+    SmallVector<OpFoldResult> modifiedStrides(strides);
+    modifiedStrides[modifiedStrides.size() - 2] = divideByConstant(
+        rewriter, createNdOp.getLoc(),
+        convertToValue(rewriter, createNdOp.getLoc(),
+                       modifiedStrides[modifiedStrides.size() - 2]),
+        innerLaneData);
+
+    // If the source is a static memref, we need to extract the pointer to
+    // base address.
+    if (memrefType && memrefType.hasStaticShape()) {
+      auto extractOp = memref::ExtractAlignedPointerAsIndexOp::create(
+          rewriter, createNdOp.getLoc(), source);
+      source = arith::IndexCastOp::create(
+                   rewriter, createNdOp.getLoc(),
+                   IntegerType::get(rewriter.getContext(), 64),
----------------
akroviakov wrote:

nit: `rewriter.getI64Type()`?

https://github.com/llvm/llvm-project/pull/165483


More information about the Mlir-commits mailing list