[Mlir-commits] [mlir] [mlir][amdgpu] Update scaled_mfma assembly format with intrinsic shape (PR #165044)
Jakub Kuderski
llvmlistbot at llvm.org
Sat Oct 25 04:31:04 PDT 2025
https://github.com/kuhar updated https://github.com/llvm/llvm-project/pull/165044
>From 9779a41ada0cc7c70b6ef92cadfb9fb34dc2184e Mon Sep 17 00:00:00 2001
From: Jakub Kuderski <jakub at nod-labs.com>
Date: Fri, 24 Oct 2025 17:15:07 -0400
Subject: [PATCH] [mlir][amdgpu] Update scaled_mfma assembly format with
intrinsic shape
Use the same format as introduced for wmma by
https://github.com/llvm/llvm-project/pull/164920 and for mfma by
https://github.com/llvm/llvm-project/pull/165037.
---
mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td | 30 ++++++++++++-------
.../Conversion/AMDGPUToROCDL/mfma-gfx950.mlir | 28 ++++++++---------
mlir/test/Dialect/AMDGPU/canonicalize.mlir | 30 +++++++++----------
mlir/test/Dialect/AMDGPU/invalid.mlir | 24 +++++++++++++++
mlir/test/Dialect/AMDGPU/ops.mlir | 4 +--
5 files changed, 74 insertions(+), 42 deletions(-)
diff --git a/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td b/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
index 1437c39c69da2..37db096f1ba75 100644
--- a/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
+++ b/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
@@ -1111,9 +1111,9 @@ def AMDGPU_ScaledMFMAOp :
AMDGPU_Op<"scaled_mfma", [AllTypesMatch<["destC", "destD"]>,
Pure]>,
Arguments<(ins
- I32Attr:$m,
- I32Attr:$n,
- I32Attr:$k,
+ ConfinedAttr<I32Attr, [IntIsOneOf<[16, 32]>]>:$m,
+ ConfinedAttr<I32Attr, [IntIsOneOf<[16, 32]>]>:$n,
+ ConfinedAttr<I32Attr, [IntIsOneOf<[64, 128]>]>:$k,
ScaledMFMAInTypes:$sourceA,
ScaledMFMAInTypes:$sourceB,
ScaledMFMAOutTypes:$destC,
@@ -1126,8 +1126,8 @@ def AMDGPU_ScaledMFMAOp :
let summary = "MLIR wrapper for CDNA scaled mfma instructions";
let description = [{
The `amdgpu.scaled_mfma` op is an MLIR wrapper around intrinsics
- for various scaled versions of `mfma` instructions in the CDNA architecture, which perform
- multiple outer products in order to allow fast matrix multiplication.
+ for various scaled versions of `mfma` instructions in the CDNA architecture, which
+ perform multiple outer products in order to allow fast matrix multiplication.
The wrapper will select an appropriate `mfma` instruction, if one is available,
based on the provided `m`, `k`, `n`, and `nBlks` attributes, along with the
@@ -1142,15 +1142,23 @@ def AMDGPU_ScaledMFMAOp :
This wrapper takes inspiration from `amdgpu.mfma`, but has some key differences:
- `amdgpu.scaled_mfma` operates on fp4 (f4E2M1FN), fp6 (f6E2M3FN and f6E3M2FN) and
- fp8 (f8E4M3FN and f8E5M2) types using either M=N=16, K=128 or M=N=32, K=64 as their tile
- size.
+ fp8 (f8E4M3FN and f8E5M2) types using either M=N=16, K=128 or M=N=32, K=64 as
+ their tile size.
- `amdgpu.scaled_mfma` does not support broadcasting. So, `cbsz`, `abid`, and `blgp`
- are omitted from this wrapper.
- - The `negateA`, `negateB`, and `negateC` flags in `amdgpu.mfma` are only supported for
- double-precision operations on gfx94x and so are not included here.
+ are omitted from this wrapper.
+ - The `negateA`, `negateB`, and `negateC` flags in `amdgpu.mfma` are only supported
+ for double-precision operations on gfx94x and so are not included here.
+
+ Example:
+ ```mlir
+ %0 = amdgpu.scaled_mfma 32x32x64 (%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2
+ : vector<4xf8E8M0FNU>, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<16xf32>
+ ```
}];
let assemblyFormat = [{
- `(` $scalesA `[` $scalesIdxA `]` `*` $sourceA `)` `*` `(` $scalesB `[` $scalesIdxB `]` `*` $sourceB `)` `+` $destC
+ custom<MNKDimensionList>($m, $n, $k) ` `
+ `(` $scalesA `[` $scalesIdxA `]` `*` $sourceA `)` `*`
+ `(` $scalesB `[` $scalesIdxB `]` `*` $sourceB `)` `+` $destC
attr-dict
`:` type($scalesA) `,` type($sourceA) `,` type($scalesB) `,` type($sourceB) `,` type($destC)
}];
diff --git a/mlir/test/Conversion/AMDGPUToROCDL/mfma-gfx950.mlir b/mlir/test/Conversion/AMDGPUToROCDL/mfma-gfx950.mlir
index 6de55d534affb..c746d7690b00d 100644
--- a/mlir/test/Conversion/AMDGPUToROCDL/mfma-gfx950.mlir
+++ b/mlir/test/Conversion/AMDGPUToROCDL/mfma-gfx950.mlir
@@ -55,10 +55,10 @@ func.func @mfma_to_rocdl(%arg0 : vector<8xf16>, %arg1 : vector<16xf32>,
// CHECK-LABEL: func @scaled_mfma_to_rocdl(
// CHECK-SAME: %[[ARG0:.*]]: vector<16xf32>, %[[ARG1:.*]]: vector<4xf32>, %[[ARG2:.*]]: vector<32xf8E4M3FN>, %[[ARG3:.*]]: vector<32xf8E5M2>, %[[ARG4:.*]]: vector<32xf6E2M3FN>, %[[ARG5:.*]]: vector<32xf6E3M2FN>, %[[ARG6:.*]]: vector<32xf4E2M1FN>, %[[ARG7:.*]]: vector<4xf8E8M0FNU>, %[[ARG8:.*]]: f8E8M0FNU
func.func @scaled_mfma_to_rocdl(%arg0 : vector<16xf32>,
- %arg1 : vector<4xf32>, %arg2 : vector<32xf8E4M3FN>,
- %arg3 : vector<32xf8E5M2>, %arg4 : vector<32xf6E2M3FN>,
- %arg5 : vector<32xf6E3M2FN>, %arg6 : vector<32xf4E2M1FN>,
- %arg7 : vector<4xf8E8M0FNU>, %arg8 : f8E8M0FNU) {
+ %arg1 : vector<4xf32>, %arg2 : vector<32xf8E4M3FN>,
+ %arg3 : vector<32xf8E5M2>, %arg4 : vector<32xf6E2M3FN>,
+ %arg5 : vector<32xf6E3M2FN>, %arg6 : vector<32xf4E2M1FN>,
+ %arg7 : vector<4xf8E8M0FNU>, %arg8 : f8E8M0FNU) {
// CHECK: %[[c0:.+]] = llvm.mlir.constant(0 : i32) : i32
// CHECK: %[[c1:.+]] = llvm.mlir.constant(1 : i32) : i32
@@ -66,39 +66,39 @@ func.func @scaled_mfma_to_rocdl(%arg0 : vector<16xf32>,
// CHECK: %[[z0:.+]] = llvm.zext {{.*}} : i8 to i32
// CHECK: rocdl.mfma.scale.f32.32x32x64.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<8xi32>, vector<8xi32>, vector<16xf32>, i32, i32, i32, i32, i32, i32) -> vector<16xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg2) * (%arg8[1] * %arg2) + %arg0 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : vector<4xf8E8M0FNU>, vector<32xf8E4M3FN>, f8E8M0FNU, vector<32xf8E4M3FN>, vector<16xf32>
+ amdgpu.scaled_mfma 32x32x64 (%arg7[0] * %arg2) * (%arg8[1] * %arg2) + %arg0 : vector<4xf8E8M0FNU>, vector<32xf8E4M3FN>, f8E8M0FNU, vector<32xf8E4M3FN>, vector<16xf32>
// CHECK: rocdl.mfma.scale.f32.16x16x128.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<8xi32>, vector<8xi32>, vector<4xf32>, i32, i32, i32, i32, i32, i32) -> vector<4xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg2) * (%arg8[1] * %arg2) + %arg1 { k = 128 : i32, m = 16 : i32, n = 16 : i32 } : vector<4xf8E8M0FNU>, vector<32xf8E4M3FN>, f8E8M0FNU, vector<32xf8E4M3FN>, vector<4xf32>
+ amdgpu.scaled_mfma 16x16x128 (%arg7[0] * %arg2) * (%arg8[1] * %arg2) + %arg1 : vector<4xf8E8M0FNU>, vector<32xf8E4M3FN>, f8E8M0FNU, vector<32xf8E4M3FN>, vector<4xf32>
// CHECK: llvm.bitcast
// CHECK: rocdl.mfma.scale.f32.32x32x64.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<8xi32>, vector<8xi32>, vector<16xf32>, i32, i32, i32, i32, i32, i32) -> vector<16xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg3) * (%arg8[1] * %arg3) + %arg0 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : vector<4xf8E8M0FNU>, vector<32xf8E5M2>, f8E8M0FNU, vector<32xf8E5M2>, vector<16xf32>
+ amdgpu.scaled_mfma 32x32x64 (%arg7[0] * %arg3) * (%arg8[1] * %arg3) + %arg0 : vector<4xf8E8M0FNU>, vector<32xf8E5M2>, f8E8M0FNU, vector<32xf8E5M2>, vector<16xf32>
// CHECK: rocdl.mfma.scale.f32.16x16x128.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<8xi32>, vector<8xi32>, vector<4xf32>, i32, i32, i32, i32, i32, i32) -> vector<4xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg3) * (%arg8[1] * %arg3) + %arg1 { k = 128 : i32, m = 16 : i32, n = 16 : i32 } : vector<4xf8E8M0FNU>, vector<32xf8E5M2>, f8E8M0FNU, vector<32xf8E5M2>, vector<4xf32>
+ amdgpu.scaled_mfma 16x16x128 (%arg7[0] * %arg3) * (%arg8[1] * %arg3) + %arg1 : vector<4xf8E8M0FNU>, vector<32xf8E5M2>, f8E8M0FNU, vector<32xf8E5M2>, vector<4xf32>
// CHECK: llvm.bitcast
// CHECK: rocdl.mfma.scale.f32.32x32x64.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<6xi32>, vector<6xi32>, vector<16xf32>, i32, i32, i32, i32, i32, i32) -> vector<16xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg4) * (%arg8[1] * %arg4) + %arg0 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : vector<4xf8E8M0FNU>, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<16xf32>
+ amdgpu.scaled_mfma 32x32x64 (%arg7[0] * %arg4) * (%arg8[1] * %arg4) + %arg0 : vector<4xf8E8M0FNU>, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<16xf32>
// CHECK: rocdl.mfma.scale.f32.16x16x128.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<6xi32>, vector<6xi32>, vector<4xf32>, i32, i32, i32, i32, i32, i32) -> vector<4xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg4) * (%arg8[1] * %arg4) + %arg1 { k = 128 : i32, m = 16 : i32, n = 16 : i32 } : vector<4xf8E8M0FNU>, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<4xf32>
+ amdgpu.scaled_mfma 16x16x128 (%arg7[0] * %arg4) * (%arg8[1] * %arg4) + %arg1 : vector<4xf8E8M0FNU>, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<4xf32>
// CHECK: llvm.bitcast
// CHECK: llvm.mlir.constant(3 : i32) : i32
// CHECK: rocdl.mfma.scale.f32.32x32x64.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<6xi32>, vector<6xi32>, vector<16xf32>, i32, i32, i32, i32, i32, i32) -> vector<16xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg5) * (%arg8[1] * %arg5) + %arg0 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : vector<4xf8E8M0FNU>, vector<32xf6E3M2FN>, f8E8M0FNU, vector<32xf6E3M2FN>, vector<16xf32>
+ amdgpu.scaled_mfma 32x32x64 (%arg7[0] * %arg5) * (%arg8[1] * %arg5) + %arg0 : vector<4xf8E8M0FNU>, vector<32xf6E3M2FN>, f8E8M0FNU, vector<32xf6E3M2FN>, vector<16xf32>
// CHECK: rocdl.mfma.scale.f32.16x16x128.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<6xi32>, vector<6xi32>, vector<4xf32>, i32, i32, i32, i32, i32, i32) -> vector<4xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg5) * (%arg8[1] * %arg5) + %arg1 { k = 128 : i32, m = 16 : i32, n = 16 : i32 } : vector<4xf8E8M0FNU>, vector<32xf6E3M2FN>, f8E8M0FNU, vector<32xf6E3M2FN>, vector<4xf32>
+ amdgpu.scaled_mfma 16x16x128 (%arg7[0] * %arg5) * (%arg8[1] * %arg5) + %arg1 : vector<4xf8E8M0FNU>, vector<32xf6E3M2FN>, f8E8M0FNU, vector<32xf6E3M2FN>, vector<4xf32>
// CHECK: llvm.bitcast
// CHECK: llvm.mlir.constant(4 : i32) : i32
// CHECK: rocdl.mfma.scale.f32.32x32x64.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<4xi32>, vector<4xi32>, vector<16xf32>, i32, i32, i32, i32, i32, i32) -> vector<16xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg6) * (%arg8[1] * %arg6) + %arg0 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, f8E8M0FNU, vector<32xf4E2M1FN>, vector<16xf32>
+ amdgpu.scaled_mfma 32x32x64 (%arg7[0] * %arg6) * (%arg8[1] * %arg6) + %arg0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, f8E8M0FNU, vector<32xf4E2M1FN>, vector<16xf32>
// CHECK: rocdl.mfma.scale.f32.16x16x128.f8f6f4{{.*}}, %[[c0]], %[[b0]], %[[c1]], %[[z0]] : (vector<4xi32>, vector<4xi32>, vector<4xf32>, i32, i32, i32, i32, i32, i32) -> vector<4xf32>
- amdgpu.scaled_mfma(%arg7[0] * %arg6) * (%arg8[1] * %arg6) + %arg1 { k = 128 : i32, m = 16 : i32, n = 16 : i32 } : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, f8E8M0FNU, vector<32xf4E2M1FN>, vector<4xf32>
+ amdgpu.scaled_mfma 16x16x128 (%arg7[0] * %arg6) * (%arg8[1] * %arg6) + %arg1 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, f8E8M0FNU, vector<32xf4E2M1FN>, vector<4xf32>
func.return
}
diff --git a/mlir/test/Dialect/AMDGPU/canonicalize.mlir b/mlir/test/Dialect/AMDGPU/canonicalize.mlir
index 52d3275dab43b..fee0c00606ab4 100644
--- a/mlir/test/Dialect/AMDGPU/canonicalize.mlir
+++ b/mlir/test/Dialect/AMDGPU/canonicalize.mlir
@@ -165,10 +165,10 @@ func.func @fold_gather_to_lds_of_cast_dest(%global: memref<128x72xf32, 1>, %lds:
// CHECK-LABEL: func @scaled_mfma
// CHECK: %[[SCALE_1:.*]] = vector.extract_strided_slice %0 {offsets = [0], sizes = [4], strides = [1]} : vector<16xf8E8M0FNU> to vector<4xf8E8M0FNU>
// CHECK: %[[SCALE_2:.*]] = vector.extract_strided_slice %2 {offsets = [4], sizes = [4], strides = [1]} : vector<16xf8E8M0FNU> to vector<4xf8E8M0FNU>
-// CHECK: amdgpu.scaled_mfma(%[[SCALE_1]][3] * %{{.*}}) * (%[[SCALE_2]][2] * %{{.*}}) {{.*}}
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%[[SCALE_1]][3] * %{{.*}}) * (%[[SCALE_2]][2] * %{{.*}}) {{.*}}
// CHECK: %[[SCALE_3:.*]] = vector.extract_strided_slice %5 {offsets = [8], sizes = [4], strides = [1]} : vector<16xf8E8M0FNU> to vector<4xf8E8M0FNU>
// CHECK: %[[SCALE_4:.*]] = vector.extract_strided_slice %7 {offsets = [12], sizes = [4], strides = [1]} : vector<16xf8E8M0FNU> to vector<4xf8E8M0FNU>
-// CHECK: amdgpu.scaled_mfma(%[[SCALE_3]][1] * %{{.*}}) * (%[[SCALE_4]][0] * %{{.*}}) {{.*}}
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%[[SCALE_3]][1] * %{{.*}}) * (%[[SCALE_4]][0] * %{{.*}}) {{.*}}
func.func @scaled_mfma(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4E2M1FN>, %scalesA: vector<2x1x8x1xf8E8M0FNU>, %scalesB: vector<2x1x8x1xf8E8M0FNU>) -> (vector<4xf32>, vector<4xf32>) {
%cst_0 = arith.constant dense<0.000000e+00> : vector<4xf32>
%cst_1 = arith.constant dense<5.877470e-39> : vector<4xf8E8M0FNU>
@@ -176,12 +176,12 @@ func.func @scaled_mfma(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4E2M1FN>, %sc
%sA = vector.insert %scaleA, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
%scaleB = vector.extract %scalesB[0, 0, 6, 0] : f8E8M0FNU from vector<2x1x8x1xf8E8M0FNU>
%sB = vector.insert %scaleB, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
- %res_0 = amdgpu.scaled_mfma(%sA[0] * %opA) * (%sB[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_0 = amdgpu.scaled_mfma 16x16x128 (%sA[0] * %opA) * (%sB[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
%scaleC = vector.extract %scalesA[1, 0, 1, 0] : f8E8M0FNU from vector<2x1x8x1xf8E8M0FNU>
%sC = vector.insert %scaleC, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
%scaleD = vector.extract %scalesB[1, 0, 4, 0] : f8E8M0FNU from vector<2x1x8x1xf8E8M0FNU>
%sD = vector.insert %scaleD, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
- %res_1 = amdgpu.scaled_mfma(%sC[0] * %opA) * (%sD[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_1 = amdgpu.scaled_mfma 16x16x128 (%sC[0] * %opA) * (%sD[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
return %res_0, %res_1 : vector<4xf32>, vector<4xf32>
}
@@ -192,7 +192,7 @@ func.func @scaled_mfma(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4E2M1FN>, %sc
// CHECK: vector.insert {{.*}} : f8E8M0FNU into vector<4xf8E8M0FNU>
// CHECK: vector.extract {{.*}} : f8E8M0FNU from vector<2xf8E8M0FNU>
// CHECK: vector.insert {{.*}} : f8E8M0FNU into vector<4xf8E8M0FNU>
-// CHECK: amdgpu.scaled_mfma({{.*}}[0] * {{.*}}) * ({{.*}}[0] * {{.*}}
+// CHECK: amdgpu.scaled_mfma 16x16x128 ({{.*}}[0] * {{.*}}) * ({{.*}}[0] * {{.*}}
func.func @scaled_mfma_less_than_4(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4E2M1FN>, %scalesA: vector<2xf8E8M0FNU>, %scalesB: vector<2xf8E8M0FNU>) -> vector<4xf32> {
%cst_0 = arith.constant dense<0.000000e+00> : vector<4xf32>
%cst_1 = arith.constant dense<5.877470e-39> : vector<4xf8E8M0FNU>
@@ -200,17 +200,17 @@ func.func @scaled_mfma_less_than_4(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4
%sA = vector.insert %scaleA, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
%scaleB = vector.extract %scalesB[1] : f8E8M0FNU from vector<2xf8E8M0FNU>
%sB = vector.insert %scaleB, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
- %res_0 = amdgpu.scaled_mfma(%sA[0] * %opA) * (%sB[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_0 = amdgpu.scaled_mfma 16x16x128 (%sA[0] * %opA) * (%sB[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
return %res_0 : vector<4xf32>
}
// -----
// CHECK-LABEL: func @scaled_mfma_ugly_shapes
-// CHECK: amdgpu.scaled_mfma(%{{.*}}[0] * %{{.*}}) * (%{{.*}}[3] * %arg1) + %cst {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
-// CHECK: amdgpu.scaled_mfma(%{{.*}}[1] * %{{.*}}) * (%{{.*}}[3] * %arg1) + %cst {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
-// CHECK: amdgpu.scaled_mfma(%{{.*}}[2] * %{{.*}}) * (%{{.*}}[2] * %arg1) + %cst {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
-// CHECK: amdgpu.scaled_mfma(%{{.*}}[3] * %{{.*}}) * (%{{.*}}[1] * %arg1) + %cst {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%{{.*}}[0] * %{{.*}}) * (%{{.*}}[3] * %arg1) + %cst : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%{{.*}}[1] * %{{.*}}) * (%{{.*}}[3] * %arg1) + %cst : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%{{.*}}[2] * %{{.*}}) * (%{{.*}}[2] * %arg1) + %cst : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+// CHECK: amdgpu.scaled_mfma 16x16x128 (%{{.*}}[3] * %{{.*}}) * (%{{.*}}[1] * %arg1) + %cst : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
func.func @scaled_mfma_ugly_shapes(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4E2M1FN>, %scalesA: vector<5x5xf8E8M0FNU>, %scalesB: vector<7x23xf8E8M0FNU>) -> (vector<4xf32>, vector<4xf32>, vector<4xf32>, vector<4xf32>) {
%cst_0 = arith.constant dense<0.000000e+00> : vector<4xf32>
%cst_1 = arith.constant dense<5.877470e-39> : vector<4xf8E8M0FNU>
@@ -237,10 +237,10 @@ func.func @scaled_mfma_ugly_shapes(%opA: vector<32xf4E2M1FN>, %opB: vector<32xf4
%sB_6_21 = vector.insert %scaleB_6_21, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
%sB_6_20 = vector.insert %scaleB_6_20, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
%sB_6_19 = vector.insert %scaleB_6_19, %cst_1 [0] : f8E8M0FNU into vector<4xf8E8M0FNU>
-
- %res_4 = amdgpu.scaled_mfma(%sA_0_4[0] * %opA) * (%sB_6_22[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
- %res_5 = amdgpu.scaled_mfma(%sA_0_5[0] * %opA) * (%sB_6_21[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
- %res_6 = amdgpu.scaled_mfma(%sA_0_6[0] * %opA) * (%sB_6_20[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
- %res_7 = amdgpu.scaled_mfma(%sA_0_7[0] * %opA) * (%sB_6_19[0] * %opB) + %cst_0 {k = 128 : i32, m = 16 : i32, n = 16 : i32} : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+
+ %res_4 = amdgpu.scaled_mfma 16x16x128 (%sA_0_4[0] * %opA) * (%sB_6_22[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_5 = amdgpu.scaled_mfma 16x16x128 (%sA_0_5[0] * %opA) * (%sB_6_21[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_6 = amdgpu.scaled_mfma 16x16x128 (%sA_0_6[0] * %opA) * (%sB_6_20[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
+ %res_7 = amdgpu.scaled_mfma 16x16x128 (%sA_0_7[0] * %opA) * (%sB_6_19[0] * %opB) + %cst_0 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf32>
return %res_4, %res_5, %res_6, %res_7 : vector<4xf32>, vector<4xf32>, vector<4xf32>, vector<4xf32>
}
diff --git a/mlir/test/Dialect/AMDGPU/invalid.mlir b/mlir/test/Dialect/AMDGPU/invalid.mlir
index b27dfdf43ca59..57847641a2d03 100644
--- a/mlir/test/Dialect/AMDGPU/invalid.mlir
+++ b/mlir/test/Dialect/AMDGPU/invalid.mlir
@@ -314,3 +314,27 @@ func.func @amdgpu.scaled_ext_packed816_invalid_input_output_sizes(%v: vector<8xf
%ret0 = amdgpu.scaled_ext_packed816 %v scale(%scale) blockSize(16) firstScaleLane(0) firstScaleByte(0) : vector<8xf8E5M2>, vector<4xf8E8M0FNU> -> vector<16xf16>
func.return
}
+
+// -----
+
+func.func @scaled_mfma_invalid_m(%arg0 : vector<4xf8E8M0FNU>, %arg1 : vector<32xf4E2M1FN>, %arg2 : vector<16xf32>) -> vector<16xf32> {
+ // expected-error at +1 {{'amdgpu.scaled_mfma' op attribute 'm' failed to satisfy constraint: 32-bit signless integer attribute whose value is one of {16, 32}}}
+ %0 = amdgpu.scaled_mfma 8x32x64 (%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<16xf32>
+ func.return %0 : vector<16xf32>
+}
+
+// -----
+
+func.func @scaled_mfma_invalid_n(%arg0 : vector<4xf8E8M0FNU>, %arg1 : vector<32xf4E2M1FN>, %arg2 : vector<16xf32>) -> vector<16xf32> {
+ // expected-error at +1 {{'amdgpu.scaled_mfma' op attribute 'n' failed to satisfy constraint: 32-bit signless integer attribute whose value is one of {16, 32}}}
+ %0 = amdgpu.scaled_mfma 32x8x64 (%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<16xf32>
+ func.return %0 : vector<16xf32>
+}
+
+// -----
+
+func.func @scaled_mfma_invalid_k(%arg0 : vector<4xf8E8M0FNU>, %arg1 : vector<32xf4E2M1FN>, %arg2 : vector<16xf32>) -> vector<16xf32> {
+ // expected-error at +1 {{'amdgpu.scaled_mfma' op attribute 'k' failed to satisfy constraint: 32-bit signless integer attribute whose value is one of {64, 128}}}
+ %0 = amdgpu.scaled_mfma 32x32x32 (%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2 : vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<4xf8E8M0FNU>, vector<32xf4E2M1FN>, vector<16xf32>
+ func.return %0 : vector<16xf32>
+}
diff --git a/mlir/test/Dialect/AMDGPU/ops.mlir b/mlir/test/Dialect/AMDGPU/ops.mlir
index d0bf0d73c4875..a33096750ee23 100644
--- a/mlir/test/Dialect/AMDGPU/ops.mlir
+++ b/mlir/test/Dialect/AMDGPU/ops.mlir
@@ -609,8 +609,8 @@ func.func @permlane32_swap(%arg0 : f32) -> f32 {
// CHECK-LABEL: func @scaled_mfma
func.func @scaled_mfma(%arg0 : f8E8M0FNU, %arg1 : vector<32xf6E2M3FN>, %arg2 : vector<16xf32>) -> vector<16xf32> {
- // CHECK: amdgpu.scaled_mfma
- %0 = amdgpu.scaled_mfma(%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2 { k = 64 : i32, m = 32 : i32, n = 32 : i32 } : f8E8M0FNU, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<16xf32>
+ // CHECK: amdgpu.scaled_mfma 32x32x64
+ %0 = amdgpu.scaled_mfma 32x32x64 (%arg0[0] * %arg1) * (%arg0[1] * %arg1) + %arg2 : f8E8M0FNU, vector<32xf6E2M3FN>, f8E8M0FNU, vector<32xf6E2M3FN>, vector<16xf32>
func.return %0 : vector<16xf32>
}
More information about the Mlir-commits
mailing list