[Mlir-commits] [mlir] [MLIR][XeGPU] Introduce `xegpu::uArch` usage in target-sensitive passes (PR #163801)

Artem Kroviakov llvmlistbot at llvm.org
Thu Oct 16 09:23:11 PDT 2025


https://github.com/akroviakov updated https://github.com/llvm/llvm-project/pull/163801

>From 9d7d1af48238eb440dbca40179517db716e910cf Mon Sep 17 00:00:00 2001
From: Artem Kroviakov <artem.kroviakov at intel.com>
Date: Thu, 16 Oct 2025 14:01:00 +0000
Subject: [PATCH 1/3] [MLIR][XeGPU] Introduce `xegpu::uArch` usage in
 target-sensitive passes

---
 .../mlir/Dialect/XeGPU/IR/XeGPUAttrs.td       |  34 ++-
 .../mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h   |  30 ---
 .../mlir/Dialect/XeGPU/Transforms/Passes.td   |   7 +-
 .../mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h    |  78 +++++-
 .../mlir/Dialect/XeGPU/uArch/uArchBase.h      |  17 +-
 mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp    |  16 +-
 .../XeGPU/Transforms/XeGPUPropagateLayout.cpp | 226 +++++++++++++-----
 .../Transforms/XeGPUSubgroupDistribute.cpp    |  26 +-
 .../XeGPU/move-gpu-func-to-warp-op.mlir       |   2 +-
 .../XeGPU/propagate-layout-inst-data.mlir     |  51 ++++
 mlir/test/Dialect/XeGPU/propagate-layout.mlir |  82 +++++--
 11 files changed, 418 insertions(+), 151 deletions(-)
 delete mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h
 create mode 100644 mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir

diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index 5695d5d515d7f..ec236d702de0d 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -379,29 +379,41 @@ def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout", [DistributeLayoutAttr]> {
   );
 
   let builders = [
-    AttrBuilder<(ins "llvm::ArrayRef<int32_t>": $lane_layout,
+    AttrBuilder<(ins "llvm::ArrayRef<int32_t>": $inst_data,
+                      "llvm::ArrayRef<int32_t>": $lane_layout,
                      "llvm::ArrayRef<int32_t>": $lane_data),
       [{
         auto sg_layout = DenseI32ArrayAttr();
         auto sg_data = DenseI32ArrayAttr();
-        auto inst_data = DenseI32ArrayAttr();
         auto order = DenseI32ArrayAttr();
-        return $_get($_ctxt, sg_layout, sg_data, inst_data,
+        return $_get($_ctxt, sg_layout, sg_data,
+                     DenseI32ArrayAttr::get($_ctxt, inst_data),
                      DenseI32ArrayAttr::get($_ctxt, lane_layout),
                      DenseI32ArrayAttr::get($_ctxt, lane_data), order);
       }]>,
     AttrBuilder<(ins "llvm::ArrayRef<int32_t>": $lane_layout,
-                     "llvm::ArrayRef<int32_t>": $lane_data,
-                     "llvm::ArrayRef<int32_t>": $order),
+                     "llvm::ArrayRef<int32_t>": $lane_data),
       [{
-        return $_get($_ctxt,
-                     /*sg_layout =*/ nullptr,
-                     /*sg_data   =*/ nullptr,
-                     /*inst_data =*/ nullptr,
+        auto sg_layout = DenseI32ArrayAttr();
+        auto sg_data = DenseI32ArrayAttr();
+        auto inst_data = DenseI32ArrayAttr();
+        auto order = DenseI32ArrayAttr();
+        return $_get($_ctxt, sg_layout, sg_data, inst_data,
                      DenseI32ArrayAttr::get($_ctxt, lane_layout),
-                     DenseI32ArrayAttr::get($_ctxt, lane_data),
-                     DenseI32ArrayAttr::get($_ctxt, order));
+                     DenseI32ArrayAttr::get($_ctxt, lane_data), order);
       }]>,
+    // AttrBuilder<(ins "llvm::ArrayRef<int32_t>": $lane_layout,
+    //                  "llvm::ArrayRef<int32_t>": $lane_data,
+    //                  "llvm::ArrayRef<int32_t>": $order),
+    //   [{
+    //     return $_get($_ctxt,
+    //                  /*sg_layout =*/ nullptr,
+    //                  /*sg_data   =*/ nullptr,
+    //                  /*inst_data =*/ nullptr,
+    //                  DenseI32ArrayAttr::get($_ctxt, lane_layout),
+    //                  DenseI32ArrayAttr::get($_ctxt, lane_data),
+    //                  DenseI32ArrayAttr::get($_ctxt, order));
+    //   }]>,
     AttrBuilder<(ins "DenseI32ArrayAttr": $lane_layout,
                      "DenseI32ArrayAttr": $lane_data,
                      "DenseI32ArrayAttr": $order),
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h
deleted file mode 100644
index 8aa9536cb67c1..0000000000000
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h
+++ /dev/null
@@ -1,30 +0,0 @@
-//===- XeGPUTargetInfo.h - Target constants ---------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUTARGETINFO_H_
-#define MLIR_DIALECT_XEGPU_IR_XEGPUTARGETINFO_H_
-
-namespace mlir {
-namespace xegpu {
-/// HW dependent constants.
-/// TODO: These constants should be queried from the target information.
-namespace targetinfo {
-constexpr unsigned subgroupSize = 16; // How many lanes in a subgroup.
-/// If DPAS A or B operands have low precision element types they must be packed
-/// according to the following sizes.
-constexpr unsigned packedSizeInBitsForDefault =
-    16; // Minimum packing size per register for DPAS A.
-constexpr unsigned packedSizeInBitsForDpasB =
-    32; // Minimum packing size per register for DPAS B.
-constexpr unsigned packedSizeInBitsForGatherScatter =
-    32; // Minimum packing size per register for Gather and Scatter ops.
-} // namespace targetinfo
-} // namespace xegpu
-} // namespace mlir
-
-#endif // MLIR_DIALECT_XEGPU_IR_XEGPUTARGETINFO_H_
diff --git a/mlir/include/mlir/Dialect/XeGPU/Transforms/Passes.td b/mlir/include/mlir/Dialect/XeGPU/Transforms/Passes.td
index 564d9c4d5422b..5ef1d499d618f 100644
--- a/mlir/include/mlir/Dialect/XeGPU/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/Transforms/Passes.td
@@ -43,7 +43,12 @@ def XeGPUPropagateLayout : Pass<"xegpu-propagate-layout"> {
   let options = [Option<
     "printOnly", "print-analysis-only", "bool",
     /*default=*/"false",
-    "Print the result of layout propagation analysis and exit.">];
+    "Print the result of layout propagation analysis and exit.">,
+    Option<
+    "assumeUnrolled", "assume-unrolled", "bool",
+    /*default=*/"false",
+    "If the input IR has SG-sized tiles matching instruction sizes, omit `inst_data`.">
+  ];
 }
 
 def XeGPUWgToSgDistribute : Pass<"xegpu-wg-to-sg-distribute"> {
diff --git a/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h b/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
index 0519f7b2e277d..5cb6d61336391 100644
--- a/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
+++ b/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
@@ -42,12 +42,59 @@ struct Xe2Plus : public uArch {
               &instrs = {})
       : uArch(archName, archDescription, regInfo, cacheInfo, instrs),
         xeCore(xeCore) {}
+  int getSubgroupSize() const override { return 16; }
+  int getPackedFormatBitSizeGatherScatter() const override { return 32; }
+  int getPackedFormatBitSize() const override { return 16; }
+  std::optional<int> getPackedFormatBitSizeDpasB() const override { return 32; }
+};
+
+//===----------------------------------------------------------------------===//
+// uArch instructions
+//===----------------------------------------------------------------------===//
+struct StoreNdInstruction : public Instruction {
+  StoreNdInstruction()
+      : Instruction(InstructionKind::STORE_ND, InstructionScope::Subgroup) {}
+
+  // Source :
+  // https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroups.html#_add_a_new_section_6_13_x_sub_group_read_and_write_functions
+  // Reads 1, 2, 4, or 8 uints of data for each work item in the sub-group from
+  // the specified pointer
+  llvm::SmallVector<int> getSortedLaneVectorLengths() { return {1, 2, 4, 8}; }
+};
+
+struct LoadNdInstruction : public Instruction {
+  LoadNdInstruction()
+      : Instruction(InstructionKind::LOAD_ND, InstructionScope::Subgroup) {}
+
+  // Source :
+  // https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroups.html#_add_a_new_section_6_13_x_sub_group_read_and_write_functions
+  // Writes 1, 2, 4, or 8 uints of data for each work item in the sub-group to
+  // the specified pointer.
+  llvm::SmallVector<int> getSortedLaneVectorLengths() { return {1, 2, 4, 8}; }
+};
+
+struct PrefetchNdInstruction : public Instruction {
+  PrefetchNdInstruction()
+      : Instruction(InstructionKind::PREFETCH_ND, InstructionScope::Subgroup) {}
+
+  // Source :
+  // https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroup_buffer_prefetch.html#_add_a_new_section_6_15_x_sub_group_prefetch_functions
+  llvm::SmallVector<int> getSortedLaneVectorLengths(int elementBitwidth) {
+    if (elementBitwidth == 8 || elementBitwidth == 16)
+      return {1, 2, 4, 8, 16};
+    else if (elementBitwidth == 32 || elementBitwidth == 64)
+      return {1, 2, 4, 8};
+    else
+      llvm_unreachable(
+          "Unsupported element bitwidth for PrefetchNdInstruction");
+  }
 };
 
-// struct to represent DPAS instruction
 struct DPASInstruction : public Instruction, public MMAInstructionInterface {
   DPASInstruction()
       : Instruction(InstructionKind::DPAS, InstructionScope::Subgroup) {}
+  // Source:
+  // https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_subgroup_matrix_multiply_accumulate.html
 
   // Override all virtuals from MatrixOpInterface
   virtual llvm::SmallVector<std::pair<uint32_t, uint32_t>, 16>
@@ -72,6 +119,9 @@ struct DPASInstruction : public Instruction, public MMAInstructionInterface {
   virtual llvm::SmallVector<uint32_t, 8> getSupportedN(Type type) override;
 };
 
+//===----------------------------------------------------------------------===//
+// uArch instructions
+//===----------------------------------------------------------------------===//
 struct PVCuArch : public Xe2Plus {
   // Maintaines ownership of the instructions owned by PVUarch
   llvm::SmallVector<std::shared_ptr<Instruction>, 8> owned_instructions;
@@ -101,9 +151,15 @@ struct PVCuArch : public Xe2Plus {
         CacheInfo(512 * 1024, 64, CacheHierarchyLevel::L2));
 
     // Add the instructions-
-    auto dpas = std::make_shared<DPASInstruction>();
-    instructions.emplace(dpas->getInstructionKind(), dpas);
-    owned_instructions.push_back(dpas);
+    llvm::SmallVector<std::shared_ptr<Instruction>> instructionsToAdd{
+        std::make_shared<DPASInstruction>(),
+        std::make_shared<StoreNdInstruction>(),
+        std::make_shared<LoadNdInstruction>(),
+        std::make_shared<PrefetchNdInstruction>()};
+    for (auto &inst : instructionsToAdd) {
+      instructions.emplace(inst->getInstructionKind(), inst);
+      owned_instructions.push_back(inst);
+    }
   }
 };
 
@@ -139,10 +195,24 @@ struct BMGuArch : public Xe2Plus {
     owned_instructions.push_back(dpas);
   }
 };
+
+inline std::shared_ptr<uArch> getUArch(const std::string &archName) {
+  if (archName == "pvc")
+    return std::make_shared<PVCuArch>();
+  else if (archName == "bmg")
+    return std::make_shared<BMGuArch>();
+  else
+    return nullptr;
+}
+
 } // namespace uArch
 } // namespace xegpu
 } // namespace mlir
 
+//===----------------------------------------------------------------------===//
+// Instruction implementations
+//===----------------------------------------------------------------------===//
+
 inline llvm::SmallVector<std::pair<uint32_t, uint32_t>, 16>
 DPASInstruction::getSupportedShapes(Type dataType, MMAOpndKind matrixType) {
   auto combineVectors = [](const llvm::SmallVector<uint32_t, 8> &a,
diff --git a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
index 955994ea5ecf5..0f5b1282f0e24 100644
--- a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
+++ b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
@@ -32,8 +32,11 @@ namespace uArch {
 // An enum class to represent the scope of an instruction
 enum class InstructionScope { Lane, Subgroup, Workgroup, Cluster };
 enum class InstructionKind {
-  DPAS, // Dot Product Accumulate Systolic (DPAS) is a matrix
-        // multiply-add operation
+  DPAS,       // Dot Product Accumulate Systolic (DPAS) is a matrix
+              // multiply-add operation
+  STORE_ND,   // Subgroup-level 2D block write instruction
+  LOAD_ND,    // Subgroup-level 2D block load instruction
+  PREFETCH_ND // Subgroup-level 2D block prefetch instruction
   // @TODO: Add more instructions as needed
 };
 
@@ -148,6 +151,16 @@ struct uArch {
 
   const std::string &getDescription() const { return description; }
 
+  virtual int getSubgroupSize() const = 0;
+  virtual int getPackedFormatBitSizeGatherScatter() const = 0;
+  virtual int getPackedFormatBitSize() const = 0;
+  virtual std::optional<int> getPackedFormatBitSizeDpasB() const = 0;
+
+  std::shared_ptr<Instruction> getInstruction(InstructionKind instKind) const {
+    assert(instructions.find(instKind) != instructions.end());
+    return instructions.at(instKind);
+  }
+
   const std::map<RegisterFileType, RegisterFileInfo> &
   getRegisterFileInfo() const {
     return registerFileInfo;
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
index 9beb22d517473..afda04fa71105 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -11,7 +11,7 @@
 #include "mlir/Dialect/Index/IR/IndexOps.h"
 #include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/Dialect/XeGPU/IR/XeGPU.h"
-#include "mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h"
+#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
 #include "mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h"
 #include "mlir/IR/Builders.h"
 #include "mlir/IR/DialectImplementation.h"
@@ -226,8 +226,10 @@ LayoutAttr::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
   }
 
   if (inst_data && lane_layout && inst_data.size() != lane_layout.size()) {
-    return emitError()
-           << "expected inst_data and lane_layout to have the same rank";
+    return emitError() << "expected inst_data and lane_layout to have the same "
+                          "rank, got inst_data "
+                       << inst_data.size() << ", lane_layout "
+                       << lane_layout.size();
   }
 
   // sg_data is optional for Workgroup layout, but its presence requires
@@ -565,10 +567,10 @@ TensorDescType::verify(llvm::function_ref<InFlightDiagnostic()> emitError,
 
   // for gather and scatter ops, Low-precision types are packed in 32-bit units.
   unsigned bitWidth = elementType.getIntOrFloatBitWidth();
-  int chunkAlignmentFactor =
-      bitWidth < targetinfo::packedSizeInBitsForGatherScatter
-          ? targetinfo::packedSizeInBitsForGatherScatter / bitWidth
-          : 1;
+  constexpr int packingBitSizeGatherScatter{32};
+  int chunkAlignmentFactor = bitWidth < packingBitSizeGatherScatter
+                                 ? packingBitSizeGatherScatter / bitWidth
+                                 : 1;
   auto scatterAttr = mlir::dyn_cast_if_present<ScatterTensorDescAttr>(encoding);
   if (scatterAttr) {
     int64_t chunkSize = scatterAttr.getChunkSizeAsInt();
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUPropagateLayout.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUPropagateLayout.cpp
index 8fab255d6347f..9c09908f3547d 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUPropagateLayout.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUPropagateLayout.cpp
@@ -14,7 +14,6 @@
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/XeGPU/IR/XeGPU.h"
-#include "mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h"
 #include "mlir/Dialect/XeGPU/Transforms/Passes.h"
 #include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
 #include "mlir/IR/Attributes.h"
@@ -37,6 +36,8 @@
 #include "llvm/Support/LogicalResult.h"
 #include "llvm/Support/raw_ostream.h"
 
+#include "mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h"
+
 namespace mlir {
 namespace xegpu {
 #define GEN_PASS_DEF_XEGPUPROPAGATELAYOUT
@@ -104,6 +105,8 @@ struct LayoutInfo {
 
   SmallVector<int> getLaneData() const;
 
+  SmallVector<int> getInstData() const;
+
   bool isSliceLayout() const {
     if (!isAssigned())
       return false;
@@ -137,6 +140,13 @@ SmallVector<int> LayoutInfo::getLaneData() const {
                              [](int64_t val) { return static_cast<int>(val); });
 }
 
+SmallVector<int> LayoutInfo::getInstData() const {
+  if (!isAssigned())
+    return {};
+  return llvm::map_to_vector(storage.getEffectiveInstDataAsInt(),
+                             [](int64_t val) { return static_cast<int>(val); });
+}
+
 void LayoutInfo::print(raw_ostream &os) const {
   if (isAssigned()) {
     os << storage;
@@ -174,12 +184,14 @@ LayoutInfo LayoutInfo::transpose(ArrayRef<int64_t> permutation) const {
 
   SmallVector<int32_t> laneLayout;
   SmallVector<int32_t> laneData;
+  SmallVector<int32_t> instData;
   for (int64_t idx : permutation) {
     laneLayout.push_back(static_cast<int32_t>(getLaneLayout()[idx]));
     laneData.push_back(static_cast<int32_t>(getLaneData()[idx]));
+    instData.push_back(static_cast<int32_t>(getInstData()[idx]));
   }
-  return LayoutInfo(
-      xegpu::LayoutAttr::get(storage.getContext(), laneLayout, laneData));
+  return LayoutInfo(xegpu::LayoutAttr::get(storage.getContext(), instData,
+                                           laneLayout, laneData));
 }
 
 //===----------------------------------------------------------------------===//
@@ -199,20 +211,33 @@ struct LayoutInfoLattice : public Lattice<LayoutInfo> {
 /// Helper Function to get the default layout for uniform values like constants.
 /// For 1D vector, lane_layout is [subgroupSize] and lane_data is [1].
 /// For 2D vector, lane_layout is [1, subgroupSize] and lane_data is [1, 1].
-static LayoutInfo getDefaultSIMTLayoutInfo(mlir::MLIRContext *ctx,
-                                           unsigned rank) {
+static LayoutInfo
+getDefaultSIMTLayoutInfo(mlir::MLIRContext *ctx, unsigned rank,
+                         std::shared_ptr<xegpu::uArch::uArch> &uArch,
+                         ArrayRef<int> instData) {
   assert((rank == 1 || rank == 2) && "Expected 1D or 2D vector.");
   if (rank == 1) {
     return LayoutInfo(
-        xegpu::LayoutAttr::get(ctx, {xegpu::targetinfo::subgroupSize}, {1}));
+        xegpu::LayoutAttr::get(ctx, instData, {uArch->getSubgroupSize()}, {1}));
   }
   return LayoutInfo(xegpu::LayoutAttr::get(
-      ctx, {1, xegpu::targetinfo::subgroupSize}, {1, 1}));
+      ctx, instData, {1, uArch->getSubgroupSize()}, {1, 1}));
+}
+
+static LayoutInfo getDefaultSIMTLayoutInfo(mlir::MLIRContext *ctx,
+                                           unsigned rank, int subgroupSize) {
+  assert((rank == 1 || rank == 2) && "Expected 1D or 2D vector.");
+  if (rank == 1) {
+    return LayoutInfo(xegpu::LayoutAttr::get(ctx, {subgroupSize}, {1}));
+  }
+  return LayoutInfo(xegpu::LayoutAttr::get(ctx, {1, subgroupSize}, {1, 1}));
 }
 
 /// Helper to get the default layout for a vector type.
-static LayoutInfo getDefaultSIMTLayoutInfo(VectorType vectorTy,
-                                           bool isScattered = false) {
+static LayoutInfo
+getDefaultSIMTLayoutInfo(VectorType vectorTy,
+                         std::shared_ptr<xegpu::uArch::uArch> &uArch,
+                         ArrayRef<int> instData, bool isScattered = false) {
   // Expecting a 1D or 2D vector.
   assert((vectorTy.getRank() == 1 || vectorTy.getRank() == 2) &&
          "Expected 1D or 2D vector.");
@@ -221,29 +246,31 @@ static LayoutInfo getDefaultSIMTLayoutInfo(VectorType vectorTy,
          "Expected int or float element type.");
   // If the rank is 1, then return default layout for 1D vector.
   if (vectorTy.getRank() == 1)
-    return getDefaultSIMTLayoutInfo(vectorTy.getContext(), 1);
+    return getDefaultSIMTLayoutInfo(vectorTy.getContext(), 1, uArch, instData);
   // Packing factor is determined by the element type bitwidth.
   int packingFactor = 1;
   unsigned bitwidth = vectorTy.getElementType().getIntOrFloatBitWidth();
   if (isScattered) {
     packingFactor =
-        bitwidth < xegpu::targetinfo::packedSizeInBitsForGatherScatter
-            ? xegpu::targetinfo::packedSizeInBitsForGatherScatter / bitwidth
+        bitwidth < uArch->getPackedFormatBitSizeGatherScatter()
+            ? uArch->getPackedFormatBitSizeGatherScatter() / bitwidth
             : 1;
-    return LayoutInfo(xegpu::LayoutAttr::get(
-        vectorTy.getContext(), {xegpu::targetinfo::subgroupSize, 1},
-        {1, packingFactor}));
+    return LayoutInfo(xegpu::LayoutAttr::get(vectorTy.getContext(), instData,
+                                             {uArch->getSubgroupSize(), 1},
+                                             {1, packingFactor}));
   }
-  if (bitwidth < xegpu::targetinfo::packedSizeInBitsForDefault)
-    packingFactor = xegpu::targetinfo::packedSizeInBitsForDefault / bitwidth;
-  return LayoutInfo(xegpu::LayoutAttr::get(vectorTy.getContext(),
-                                           {1, xegpu::targetinfo::subgroupSize},
+  if (bitwidth < uArch->getPackedFormatBitSize())
+    packingFactor = uArch->getPackedFormatBitSize() / bitwidth;
+  return LayoutInfo(xegpu::LayoutAttr::get(vectorTy.getContext(), instData,
+                                           {1, uArch->getSubgroupSize()},
                                            {1, packingFactor}));
 }
 
 /// Helper to get the default layout for a vector type.
-static LayoutInfo getDefaultSIMTLayoutInfo(xegpu::TensorDescType tdescTy,
-                                           bool isScattered = false) {
+static LayoutInfo
+getDefaultSIMTLayoutInfo(xegpu::TensorDescType tdescTy,
+                         std::shared_ptr<xegpu::uArch::uArch> &uArch,
+                         ArrayRef<int> instData, bool isScattered = false) {
   // Expecting a 1D or 2D vector.
   assert((tdescTy.getRank() == 1 || tdescTy.getRank() == 2) &&
          "Expected 1D or 2D TensorDesc.");
@@ -252,27 +279,24 @@ static LayoutInfo getDefaultSIMTLayoutInfo(xegpu::TensorDescType tdescTy,
          "Expected int or float element type.");
   // If the rank is 1, then return default layout for 1D vector.
   if (tdescTy.getRank() == 1)
-    return getDefaultSIMTLayoutInfo(tdescTy.getContext(), 1);
+    return getDefaultSIMTLayoutInfo(tdescTy.getContext(), 1, uArch, instData);
   // Packing factor is determined by the element type bitwidth.
   unsigned bitwidth = tdescTy.getElementType().getIntOrFloatBitWidth();
-
+  int subgroupSize = uArch->getSubgroupSize();
   if (isScattered) {
     int packingFactor =
-        bitwidth < xegpu::targetinfo::packedSizeInBitsForGatherScatter
-            ? xegpu::targetinfo::packedSizeInBitsForGatherScatter / bitwidth
+        bitwidth < uArch->getPackedFormatBitSizeGatherScatter()
+            ? uArch->getPackedFormatBitSizeGatherScatter() / bitwidth
             : 1;
     return LayoutInfo(xegpu::LayoutAttr::get(
-        tdescTy.getContext(), {xegpu::targetinfo::subgroupSize, 1},
-        {1, packingFactor}));
+        tdescTy.getContext(), instData, {subgroupSize, 1}, {1, packingFactor}));
   }
 
-  int packingFactor =
-      (bitwidth < xegpu::targetinfo::packedSizeInBitsForDefault)
-          ? xegpu::targetinfo::packedSizeInBitsForDefault / bitwidth
-          : 1;
-  return LayoutInfo(xegpu::LayoutAttr::get(tdescTy.getContext(),
-                                           {1, xegpu::targetinfo::subgroupSize},
-                                           {1, packingFactor}));
+  int packingFactor = (bitwidth < uArch->getPackedFormatBitSize())
+                          ? uArch->getPackedFormatBitSize() / bitwidth
+                          : 1;
+  return LayoutInfo(xegpu::LayoutAttr::get(
+      tdescTy.getContext(), instData, {1, subgroupSize}, {1, packingFactor}));
 }
 
 /// Helper Function to get the expected layouts for DPAS operands. `lane_data`
@@ -281,25 +305,27 @@ static LayoutInfo getDefaultSIMTLayoutInfo(xegpu::TensorDescType tdescTy,
 /// `packedSizeInBitsForDefault`
 /// * For B operand, the data must be packed in minimum
 /// `packedSizeInBitsForDpasB`
-static LayoutInfo getSIMTLayoutInfoForDPASOperand(VectorType vectorTy,
-                                                  unsigned operandNum) {
+static LayoutInfo
+getSIMTLayoutInfoForDPASOperand(VectorType vectorTy, unsigned operandNum,
+                                std::shared_ptr<xegpu::uArch::uArch> &uArch,
+                                ArrayRef<int> instData) {
   Type elementTy = vectorTy.getElementType();
   assert(elementTy.isIntOrFloat() &&
          "Expected int or float type in DPAS operands");
-  SmallVector<int32_t, 2> layout({1, xegpu::targetinfo::subgroupSize});
+  SmallVector<int32_t, 2> layout({1, uArch->getSubgroupSize()});
   // For B operand, data must be packed in minimum `packedDpasBSizeInBits` and
   // must have the VNNI format.
-  if (operandNum == 1 && elementTy.getIntOrFloatBitWidth() <
-                             xegpu::targetinfo::packedSizeInBitsForDpasB) {
+  auto packSizeB = uArch->getPackedFormatBitSizeDpasB();
+  assert(packSizeB.has_value() && "uArch must support dpas instructions");
+  if (operandNum == 1 && elementTy.getIntOrFloatBitWidth() < *packSizeB) {
     SmallVector<int32_t, 2> data(
-        {static_cast<int32_t>(xegpu::targetinfo::packedSizeInBitsForDpasB /
-                              elementTy.getIntOrFloatBitWidth()),
+        {static_cast<int32_t>(*packSizeB / elementTy.getIntOrFloatBitWidth()),
          1});
     return LayoutInfo(
-        xegpu::LayoutAttr::get(vectorTy.getContext(), layout, data));
+        xegpu::LayoutAttr::get(vectorTy.getContext(), instData, layout, data));
   }
   // Otherwise, return the default layout for the vector type.
-  return getDefaultSIMTLayoutInfo(vectorTy);
+  return getDefaultSIMTLayoutInfo(vectorTy, uArch, instData);
 }
 
 //===----------------------------------------------------------------------===//
@@ -456,7 +482,22 @@ void LayoutInfoPropagation::visitPrefetchNdOp(
   // Here we assign the default layout to the tensor descriptor operand of
   // prefetch.
   auto tdescTy = prefetch.getTensorDescType();
-  auto prefetchLayout = getDefaultSIMTLayoutInfo(tdescTy);
+
+  auto uArch = getUArch(getChipStr(prefetch).value_or(""));
+  int subgroupSize = uArch->getSubgroupSize();
+  auto uArchInstruction =
+      std::static_pointer_cast<xegpu::uArch::PrefetchNdInstruction>(
+          uArch->getInstruction(xegpu::uArch::InstructionKind::STORE_ND));
+  int maxVecLength =
+      uArchInstruction
+          ->getSortedLaneVectorLengths(tdescTy.getElementTypeBitWidth())
+          .back();
+  SmallVector<int> instData;
+  if (tdescTy.getRank() == 1)
+    instData = {subgroupSize};
+  else
+    instData = {maxVecLength, subgroupSize};
+  auto prefetchLayout = getDefaultSIMTLayoutInfo(tdescTy, uArch, instData);
   // Propagate the layout to the source tensor descriptor.
   propagateIfChanged(operands[0], operands[0]->meet(prefetchLayout));
 }
@@ -475,10 +516,11 @@ void LayoutInfoPropagation::visitVectorMultiReductionOp(
     reduction.emitWarning("Expecting output type to be 1D vector.");
     return;
   }
+  auto uArch = getUArch(xegpu::getChipStr(reduction).value_or(""));
   // Given that the result is 1D, the layout of the operand should be 2D with
   // default layout.
-  LayoutInfo operandLayout =
-      getDefaultSIMTLayoutInfo(reduction->getContext(), 2);
+  LayoutInfo operandLayout = getDefaultSIMTLayoutInfo(
+      reduction->getContext(), 2, uArch->getSubgroupSize());
   propagateIfChanged(operands[0], operands[0]->meet(operandLayout));
   // Accumulator should have the same layout as the result.
   propagateIfChanged(operands[1], operands[1]->meet(resultLayout));
@@ -557,15 +599,33 @@ void LayoutInfoPropagation::visitDpasOp(
     ArrayRef<const LayoutInfoLattice *> results) {
   VectorType aTy = dpas.getLhsType();
   VectorType bTy = dpas.getRhsType();
-  propagateIfChanged(
-      operands[0], operands[0]->meet(getSIMTLayoutInfoForDPASOperand(aTy, 0)));
-  propagateIfChanged(
-      operands[1], operands[1]->meet(getSIMTLayoutInfoForDPASOperand(bTy, 1)));
+
+  auto uArch = getUArch(getChipStr(dpas).value_or(""));
+  const int subgroupSize = uArch->getSubgroupSize();
+  auto uArchInstruction =
+      std::static_pointer_cast<xegpu::uArch::DPASInstruction>(
+          uArch->getInstruction(xegpu::uArch::InstructionKind::DPAS));
+  const int maxALen =
+      uArchInstruction->getSupportedM(aTy.getElementType()).back();
+  const int maxBLen =
+      uArchInstruction->getSupportedK(bTy.getElementType()).back();
+  SmallVector<int> instDataA = {maxALen, subgroupSize};
+  SmallVector<int> instDataB = {subgroupSize, maxBLen};
+
+  propagateIfChanged(operands[0],
+                     operands[0]->meet(getSIMTLayoutInfoForDPASOperand(
+                         aTy, 0, uArch, instDataA)));
+  propagateIfChanged(operands[1],
+                     operands[1]->meet(getSIMTLayoutInfoForDPASOperand(
+                         bTy, 1, uArch, instDataB)));
   if (operands.size() > 2) {
     VectorType cTy = dpas.getAccType();
-    propagateIfChanged(
-        operands[2],
-        operands[2]->meet(getSIMTLayoutInfoForDPASOperand(cTy, 2)));
+    const int maxCLen =
+        uArchInstruction->getSupportedN(bTy.getElementType()).back();
+    SmallVector<int> instDataC = {maxALen, maxCLen};
+    propagateIfChanged(operands[2],
+                       operands[2]->meet(getSIMTLayoutInfoForDPASOperand(
+                           cTy, 2, uArch, instDataC)));
   }
 }
 
@@ -573,7 +633,20 @@ void LayoutInfoPropagation::visitDpasOp(
 void LayoutInfoPropagation::visitStoreNdOp(
     xegpu::StoreNdOp store, ArrayRef<LayoutInfoLattice *> operands,
     ArrayRef<const LayoutInfoLattice *> results) {
-  LayoutInfo storeLayout = getDefaultSIMTLayoutInfo(store.getValueType());
+
+  auto uArch = getUArch(getChipStr(store).value_or(""));
+  int subgroupSize = uArch->getSubgroupSize();
+  auto uArchInstruction =
+      std::static_pointer_cast<xegpu::uArch::StoreNdInstruction>(
+          uArch->getInstruction(xegpu::uArch::InstructionKind::STORE_ND));
+  int maxVecLength = uArchInstruction->getSortedLaneVectorLengths().back();
+  SmallVector<int> instData;
+  if (store.getValueType().getRank() == 1)
+    instData = {subgroupSize};
+  else
+    instData = {maxVecLength, subgroupSize};
+  LayoutInfo storeLayout =
+      getDefaultSIMTLayoutInfo(store.getValueType(), uArch, instData);
   // Both operands should have the same layout
   for (LayoutInfoLattice *operand : operands)
     propagateIfChanged(operand, operand->meet(storeLayout));
@@ -694,10 +767,22 @@ void LayoutInfoPropagation::visitLoadGatherOp(
     load.emitWarning("Not propagating, non-vector payload supplied.");
     return;
   }
-  LayoutInfo layout = getDefaultSIMTLayoutInfo(payloadTy, /*scattered*/ true);
+  auto uArch = getUArch(getChipStr(load).value_or(""));
+  const int subgroupSize = uArch->getSubgroupSize();
+  SmallVector<int> instData{subgroupSize};
+  if (auto chunkSize = load.getChunkSize().value_or(0); chunkSize > 1)
+    instData.push_back(chunkSize);
+  else if (auto srcTdescTy =
+               dyn_cast<xegpu::TensorDescType>(load.getSourceType())) {
+    if (srcTdescTy.getChunkSizeAsInt() > 1)
+      instData.push_back(chunkSize);
+  }
+  LayoutInfo layout =
+      getDefaultSIMTLayoutInfo(payloadTy, uArch, instData, /*scattered*/ true);
 
   // Mask operand should have 1D default layout.
-  LayoutInfo maskLayout = getDefaultSIMTLayoutInfo(load->getContext(), 1);
+  LayoutInfo maskLayout =
+      getDefaultSIMTLayoutInfo(load->getContext(), 1, subgroupSize);
 
   // Propagate the new layout to the tensor descriptor operand.
   if (isa<xegpu::TensorDescType>(load.getSourceType()))
@@ -717,8 +802,10 @@ void LayoutInfoPropagation::visitCreateDescOp(
   // Need the layout of the descriptor to propagate to the operands.
   if (!descLayout.isAssigned())
     return;
+  auto uArch = getUArch(getChipStr(createDesc).value_or(""));
   // For offset operand propagate 1D default layout.
-  LayoutInfo layout = getDefaultSIMTLayoutInfo(createDesc->getContext(), 1);
+  LayoutInfo layout = getDefaultSIMTLayoutInfo(createDesc->getContext(), 1,
+                                               uArch->getSubgroupSize());
   propagateIfChanged(operands[1], operands[1]->meet(layout));
 }
 
@@ -735,18 +822,29 @@ void LayoutInfoPropagation::visitStoreScatterOp(
     storeScatter.emitWarning("Not propagating, non-vector payload supplied.");
     return;
   }
+  auto uArch = getUArch(getChipStr(storeScatter).value_or(""));
+  const int subgroupSize = uArch->getSubgroupSize();
+
   auto payloadShape = payloadTy.getShape();
   if (payloadShape.size() > 1)
     assert(
-        payloadShape[0] == xegpu::targetinfo::subgroupSize &&
+        payloadShape[0] == subgroupSize &&
         "Expected the first dimension of 2D tensor descriptor to be equal to "
         "subgroup size.");
 
+  SmallVector<int> instData{subgroupSize};
+  if (auto chunkSize = storeScatter.getChunkSize().value_or(0); chunkSize > 1)
+    instData.push_back(chunkSize);
+  else if (auto dstTdescTy =
+               dyn_cast<xegpu::TensorDescType>(storeScatter.getDestType())) {
+    if (dstTdescTy.getChunkSizeAsInt() > 1)
+      instData.push_back(chunkSize);
+  }
   LayoutInfo payloadLayout =
-      getDefaultSIMTLayoutInfo(payloadTy, /*scattered=*/true);
+      getDefaultSIMTLayoutInfo(payloadTy, uArch, instData, /*scattered=*/true);
 
   LayoutInfo maskLayout =
-      getDefaultSIMTLayoutInfo(storeScatter->getContext(), 1);
+      getDefaultSIMTLayoutInfo(storeScatter->getContext(), 1, subgroupSize);
   // Propagate the payload operand layout
   propagateIfChanged(operands[0], operands[0]->meet(payloadLayout));
   // Propagate the destination (if tdesc) operand layout
@@ -1023,9 +1121,13 @@ void XeGPUPropagateLayoutPass::runOnOperation() {
     LayoutInfo layout = analysis.getLayoutInfo(val);
     if (!layout.isAssigned())
       return {};
+    xegpu::DistributeLayoutAttr layoutAttr =
+        cast<xegpu::DistributeLayoutAttr>(layout.get());
+    if (this->assumeUnrolled)
+      layoutAttr = layoutAttr.dropInstData();
     if (layout.isSliceLayout())
-      return cast<xegpu::SliceAttr>(layout.get());
-    return cast<xegpu::LayoutAttr>(layout.get());
+      return cast<xegpu::SliceAttr>(layoutAttr);
+    return cast<xegpu::LayoutAttr>(layoutAttr);
   };
 
   mlir::OpBuilder builder(&getContext());
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
index 26770b3c003ea..75466f0efcd36 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUSubgroupDistribute.cpp
@@ -11,10 +11,10 @@
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
 #include "mlir/Dialect/XeGPU/IR/XeGPU.h"
-#include "mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h"
 #include "mlir/Dialect/XeGPU/Transforms/Passes.h"
 #include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
 #include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
+#include "mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h"
 #include "mlir/IR/AffineMap.h"
 #include "mlir/IR/Attributes.h"
 #include "mlir/IR/Builders.h"
@@ -159,17 +159,17 @@ static bool requirePacked(const xegpu::LayoutAttr layout) {
 
 /// Helper function to check if the layout requires a transpose effect.
 static bool requireTranspose(const xegpu::LayoutAttr layout,
-                             const std::string &chipStr) {
+                             std::shared_ptr<xegpu::uArch::uArch> uArch) {
   // Return false for unsupported targets.
   // TODO: Add more support or move to target info.
-  if (chipStr != "pvc" && chipStr != "bmg")
+  if (uArch->getName() != "pvc" && uArch->getName() != "bmg")
     return false;
   if (!layout)
     return false;
   auto laneLayout = layout.getEffectiveLaneLayoutAsInt();
   if (laneLayout.size() != 2)
     return false;
-  return laneLayout[0] == xegpu::targetinfo::subgroupSize && laneLayout[1] == 1;
+  return laneLayout[0] == uArch->getSubgroupSize() && laneLayout[1] == 1;
 }
 
 /// Given a GPUFuncOp, this pattern creates a new GPUFuncOp and moves the body
@@ -228,9 +228,14 @@ struct MoveFuncBodyToWarpOp : public OpRewritePattern<gpu::GPUFuncOp> {
         rewriter, newGpuFunc.getLoc(), rewriter.getIndexType(),
         /** upperBound = **/ mlir::IntegerAttr());
     ArrayRef<Type> gpuFuncResultType = gpuFuncOp.getFunctionType().getResults();
+    auto uArch = getUArch(xegpu::getChipStr(gpuFuncOp).value_or(""));
+    if (!uArch)
+      return rewriter.notifyMatchFailure(
+          gpuFuncOp, "Subgroup distribution requires target attribute attached "
+                     "to set the warp size");
     auto warpOp = gpu::WarpExecuteOnLane0Op::create(
         rewriter, laneId.getLoc(), gpuFuncResultType, laneId,
-        xegpu::targetinfo::subgroupSize, newGpuFunc.getArguments(),
+        uArch->getSubgroupSize(), newGpuFunc.getArguments(),
         newGpuFunc.getArgumentTypes());
     Block &warpBodyBlock = warpOp.getBodyRegion().front();
     // Replace the ReturnOp of the original gpu function with a YieldOp.
@@ -498,11 +503,12 @@ struct LoadNdDistribution final : public gpu::WarpDistributionPattern {
     // Chip information is required to decide if the layout requires transpose
     // effect.
     auto chipStr = xegpu::getChipStr(loadOp);
-    if (!chipStr)
+    auto uArch = getUArch(chipStr.value_or(""));
+    if (!uArch)
       return rewriter.notifyMatchFailure(
-          loadOp,
-          "xegpu::LoadNdOp require chip information to determine transpose "
-          "requirement");
+          loadOp, "xegpu::LoadNdOp require target attribute attached to "
+                  "determine transpose "
+                  "requirement");
     // Expecting offsets to be present.
     SmallVector<OpFoldResult> offsets = loadOp.getMixedOffsets();
     if (offsets.empty())
@@ -556,7 +562,7 @@ struct LoadNdDistribution final : public gpu::WarpDistributionPattern {
     // Set the packed attribute if the layout requires it.
     newLoadOp.setPacked(requirePacked(layout));
     // Set the transpose attribute if the layout requires it.
-    if (requireTranspose(layout, chipStr.value()))
+    if (requireTranspose(layout, uArch))
       newLoadOp.setTranspose(
           DenseI64ArrayAttr::get(rewriter.getContext(), {1, 0}));
     Value distributedVal = newWarpOp.getResult(operandIdx);
diff --git a/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir
index d289d73e863c7..2780212d2917f 100644
--- a/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir
+++ b/mlir/test/Dialect/XeGPU/move-gpu-func-to-warp-op.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt -test-xegpu-move-func-to-warp-op -split-input-file --allow-unregistered-dialect %s | FileCheck %s
+// RUN: mlir-opt -xevm-attach-target='chip=pvc' -test-xegpu-move-func-to-warp-op -split-input-file --allow-unregistered-dialect %s | FileCheck %s
 
 gpu.module @test {
 gpu.func @empty()  {
diff --git a/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir b/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir
new file mode 100644
index 0000000000000..5020bb1450890
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/propagate-layout-inst-data.mlir
@@ -0,0 +1,51 @@
+// RUN: mlir-opt -xevm-attach-target='chip=pvc' -xegpu-propagate-layout -split-input-file %s | FileCheck %s
+
+// CHECK-LABEL: func.func @dpas_f16(
+// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
+// CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} dense<0.000000e+00> : vector<8x16xf32>
+// CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][{{.*}}] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>>
+// CHECK: %[[T1:.*]] = xegpu.create_nd_tdesc %[[ARG1]][{{.*}}] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>>
+// CHECK: %[[T2:.*]] = xegpu.load_nd %[[T0]]  {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} :
+// CHECK-SAME: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x16xf16>
+// CHECK: %[[T3:.*]] = xegpu.load_nd %[[T1]]  {layout_result_0 = #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>} :
+// CHECK-SAME: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<inst_data = [16, 16], lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<16x16xf16>
+// CHECK: %[[T4:.*]] = xegpu.dpas %[[T2]], %[[T3]], %[[CST]] {layout_result_0 = #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>} :
+// CHECK-SAME: vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32>
+// CHECK: %[[T5:.*]] = xegpu.create_nd_tdesc %[[ARG2]][{{.*}}] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>>
+// CHECK: xegpu.store_nd %[[T4]], %[[T5]] : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout<inst_data = [8, 16], lane_layout = [1, 16], lane_data = [1, 1]>>
+gpu.module @test {
+
+func.func @dpas_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<8x16xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant dense<0.000000e+00> : vector<8x16xf32>
+  %0 = xegpu.create_nd_tdesc %arg0[%c0, %c0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %arg1[%c0, %c0] : memref<16x16xf16> -> !xegpu.tensor_desc<16x16xf16>
+  %2 = xegpu.load_nd %0  : !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
+  %3 = xegpu.load_nd %1  : !xegpu.tensor_desc<16x16xf16> -> vector<16x16xf16>
+  %4 = xegpu.dpas %2, %3, %cst : vector<8x16xf16>, vector<16x16xf16>, vector<8x16xf32> -> vector<8x16xf32>
+  %5 = xegpu.create_nd_tdesc %arg2[%c0, %c0] : memref<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+  xegpu.store_nd %4, %5  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+  return
+}
+}
+
+
+// -----
+gpu.module @test {
+// CHECK-LABEL: func.func @scatter_ops_chunksize(
+// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) {
+// CHECK: %{{.*}} = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1>
+// CHECK: %{{.*}} = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<12> : vector<16xindex>
+// CHECK: %{{.*}} = xegpu.load %[[ARG0]][%{{.*}}], %{{.*}} <{chunk_size = 8 : i64}>
+// CHECK-SAME: {layout_result_0 = #xegpu.layout<inst_data = [16, 8], lane_layout = [16, 1], lane_data = [1, 2]>} : memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16>
+// CHECK: xegpu.store %0, %[[ARG0]][%{{.*}}], %{{.*}} <{chunk_size = 8 : i64}> : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1>
+func.func @scatter_ops_chunksize(%src: memref<256xf16>) {
+  %1 = arith.constant dense<1>: vector<16xi1>
+  %offset = arith.constant dense<12> : vector<16xindex>
+  %3 = xegpu.load %src[%offset], %1 <{chunk_size=8}>
+      : memref<256xf16>, vector<16xindex>, vector<16xi1> -> vector<16x8xf16>
+  xegpu.store %3, %src[%offset], %1 <{chunk_size=8}>
+      : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1>
+  return
+}
+}
diff --git a/mlir/test/Dialect/XeGPU/propagate-layout.mlir b/mlir/test/Dialect/XeGPU/propagate-layout.mlir
index 30f785ded975a..512879bcd1954 100644
--- a/mlir/test/Dialect/XeGPU/propagate-layout.mlir
+++ b/mlir/test/Dialect/XeGPU/propagate-layout.mlir
@@ -1,5 +1,6 @@
-// RUN: mlir-opt -xegpu-propagate-layout -split-input-file %s | FileCheck %s
+// RUN: mlir-opt -xevm-attach-target='chip=pvc' -xegpu-propagate-layout="assume-unrolled" -split-input-file %s | FileCheck %s
 
+gpu.module @test {
 // CHECK-LABEL: func.func @dpas_f16(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
 // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} dense<0.000000e+00> : vector<8x16xf32>
@@ -25,8 +26,10 @@ func.func @dpas_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %arg2: me
   xegpu.store_nd %4, %5  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @dpas_i8(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<8x32xi8>, %[[ARG1:[0-9a-zA-Z]+]]: vector<32x16xi8>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xi32>) {
 // CHECK: %[[T0:.*]] = xegpu.dpas %[[ARG0]], %[[ARG1]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16],
@@ -37,8 +40,10 @@ func.func @dpas_i8(%arg0: vector<8x32xi8>, %arg1: vector<32x16xi8>, %arg2: memre
   xegpu.store_nd %0, %1  : vector<8x16xi32>, !xegpu.tensor_desc<8x16xi32>
   return
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @load_with_transpose_effect(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG0:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
 // CHECK: %{{.*}} = xegpu.load_nd %{{.*}} <{transpose = array<i64: 1, 0>}> {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>} :
@@ -55,8 +60,10 @@ func.func @load_with_transpose_effect(%arg0: memref<8x16xf16>, %arg1: memref<16x
   xegpu.store_nd %4, %5  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_transpose(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<16x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
 // CHECK: %{{.*}} = vector.transpose %{{.*}}, [1, 0] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>} : vector<16x16xf16> to vector<16x16xf16>
@@ -73,8 +80,10 @@ func.func @vector_transpose(%arg0: memref<8x16xf16>, %arg1: memref<16x16xf16>, %
   xegpu.store_nd %5, %6  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @extf_truncf(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>, %[[ARG1:[0-9a-zA-Z]+]]:
 // CHECK-SAME: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>) -> vector<8x16xf32> {
@@ -88,8 +97,10 @@ func.func @extf_truncf(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.tensor
   %4 = xegpu.dpas %0, %3 : vector<8x16xf16>, vector<16x16xf16> -> vector<8x16xf32>
   return %4 : vector<8x16xf32>
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @load_gather_with_chunksize(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x16xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
 // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>}
@@ -113,8 +124,10 @@ func.func @load_gather_with_chunksize(%arg0: memref<8x16xf16>, %arg1: memref<256
   xegpu.store_nd %5, %6  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @load_gather_1d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) {
 // CHECK: %[[CST:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>}
@@ -132,8 +145,9 @@ func.func @load_gather_1d(%arg0: memref<256xf32>, %arg1: !xegpu.tensor_desc<16xf
   xegpu.store_nd %1, %arg1  : vector<16xf32>, !xegpu.tensor_desc<16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @store_scatter_with_chunksize(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<128xf32>) {
 // CHECK: %[[T0:.*]] = xegpu.create_tdesc %[[ARG0]], %{{.*}} : memref<128xf32>, vector<16xindex> ->
@@ -148,8 +162,9 @@ func.func @store_scatter_with_chunksize(%arg0: memref<128xf32>) {
   xegpu.store %cst, %0, %cst_0 : vector<16x8xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>>, vector<16xi1>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @store_scatter_1d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf32>) {
 // CHECK: xegpu.store %[[ARG0]], %{{.*}}, %{{.*}}  : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>,
@@ -161,8 +176,9 @@ func.func @store_scatter_1d(%arg0: vector<16xf32>, %arg1: memref<256xf32>) {
   xegpu.store %arg0, %0, %cst_0  : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @scatter_ops_chunksize(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) {
 // CHECK: %[[MASK:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1>
@@ -179,8 +195,9 @@ func.func @scatter_ops_chunksize(%src: memref<256xf16>) {
       : vector<16x8xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @scatter_ops(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) {
 // CHECK: %[[MASK:.*]] = arith.constant {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} dense<true> : vector<16xi1>
@@ -195,8 +212,9 @@ func.func @scatter_ops(%src: memref<256xf16>) {
   xegpu.store %3, %src[%offset], %1 : vector<16xf16>, memref<256xf16>, vector<16xindex>, vector<16xi1>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_bitcast_i16_to_f16(
 // CHECK:       %[[LOAD0:.*]] = xegpu.load_nd %{{.*}}  {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}
 // CHECK-SAME:     !xegpu.tensor_desc<8x16xi16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x16xi16>
@@ -219,8 +237,9 @@ func.func @vector_bitcast_i16_to_f16(%arg0: memref<8x16xi16>, %arg1: memref<16x1
   xegpu.store_nd %6, %7  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_bitcast_i32_to_f16(
 // CHECK:      %[[LOAD:.*]] = xegpu.load_nd %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>}
 // CHECK-SAME:     !xegpu.tensor_desc<16x8xi32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>> -> vector<16x8xi32>
@@ -239,8 +258,9 @@ func.func @vector_bitcast_i32_to_f16(%arg0: memref<8x16xf16>, %arg1: memref<16x8
   xegpu.store_nd %6, %7  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_bitcast_i16_to_i32(
 // CHECK:      %[[LOAD:.*]] = xegpu.load_nd %{{.*}}  {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 2]>}
 // CHECK-SAME:     !xegpu.tensor_desc<8x32xi16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 2]>> -> vector<8x32xi16>
@@ -255,8 +275,9 @@ func.func @vector_bitcast_i16_to_i32(%arg0: memref<8x32xi16>, %arg1: memref<8x16
   xegpu.store_nd %3, %1  : vector<8x16xi32>, !xegpu.tensor_desc<8x16xi32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_bitcast_require_cross_lane_shuffle(
 // CHECK:     %[[LOAD:.*]] = xegpu.load_nd %{{.*}} : !xegpu.tensor_desc<8x16xi32> -> vector<8x16xi32>
 // CHECK:     %{{.*}} = vector.bitcast %[[LOAD]] {layout_result_0 = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}
@@ -270,9 +291,10 @@ func.func @vector_bitcast_require_cross_lane_shuffle(%arg0: memref<8x16xi32>, %a
   xegpu.store_nd %3, %1  : vector<8x32xi16>, !xegpu.tensor_desc<8x32xi16>
   return
 }
-
+}
 
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @binary_op_one_use(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>,
@@ -291,8 +313,9 @@ func.func @binary_op_one_use(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.
   xegpu.store_nd %4, %arg2  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @binary_op_multiple_uses(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
@@ -312,8 +335,9 @@ func.func @binary_op_multiple_uses(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !
   xegpu.store_nd %2, %arg3  : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @for_op(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<8x128xf16>, %[[ARG1:[0-9a-zA-Z]+]]: memref<128x16xf16>, %[[ARG2:[0-9a-zA-Z]+]]: memref<8x16xf32>) {
 // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<8x128xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
@@ -353,8 +377,9 @@ func.func @for_op(%arg0: memref<8x128xf16>, %arg1: memref<128x16xf16>, %arg2: me
   xegpu.store_nd %2#2, %3  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @if_single_use(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>,
@@ -381,8 +406,9 @@ func.func @if_single_use(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.tens
   xegpu.store_nd %2, %arg3  : vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @if_multiple_uses(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME: %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
@@ -411,8 +437,9 @@ func.func @if_multiple_uses(%arg0: !xegpu.tensor_desc<8x16xf16>, %arg1: !xegpu.t
   xegpu.store_nd %1, %arg4  : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_outer_reduction(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16x16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) {
 // CHECK: %{{.*}} = vector.multi_reduction <add>, %[[ARG0]], %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} [0] : vector<16x16xf32> to vector<16xf32>
@@ -422,8 +449,9 @@ func.func @vector_outer_reduction(%arg0: vector<16x16xf32>, %arg1: !xegpu.tensor
   xegpu.store_nd %0, %arg1  : vector<16xf32>, !xegpu.tensor_desc<16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_inner_reduction(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: vector<16x16xf32>, %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>) {
 // CHECK: %{{.*}} = vector.multi_reduction <add>, %[[ARG0]], %{{.*}} {layout_result_0 = #xegpu.layout<lane_layout = [16], lane_data = [1]>} [1] : vector<16x16xf32> to vector<16xf32>
@@ -433,8 +461,9 @@ func.func @vector_inner_reduction(%arg0: vector<16x16xf32>, %arg1: !xegpu.tensor
   xegpu.store_nd %0, %arg1  : vector<16xf32>, !xegpu.tensor_desc<16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @update_nd_offset_1d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>) {
 // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf32> -> !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
@@ -448,8 +477,9 @@ func.func @update_nd_offset_1d(%arg0: memref<256xf32>){
   xegpu.store_nd %1, %2 : vector<16xf32>, !xegpu.tensor_desc<16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @update_nd_offset_2d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf32>) {
 // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}, %{{.*}}] : memref<256x256xf32> -> !xegpu.tensor_desc<16x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
@@ -463,8 +493,9 @@ func.func @update_nd_offset_2d(%arg0: memref<256x256xf32>){
   xegpu.store_nd %1, %2 : vector<16x16xf32>, !xegpu.tensor_desc<16x16xf32>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @prefetch_2d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256x256xf16>) {
 // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}, %{{.*}}] : memref<256x256xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
@@ -475,8 +506,9 @@ func.func @prefetch_2d(%arg0: memref<256x256xf16>){
   xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<16x16xf16>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @prefetch_1d(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf16>) {
 // CHECK: %[[T0:.*]] = xegpu.create_nd_tdesc %[[ARG0]][%{{.*}}] : memref<256xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
@@ -487,8 +519,9 @@ func.func @prefetch_1d(%arg0: memref<256xf16>){
   xegpu.prefetch_nd %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<16xf16>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @scf_while_and_condition(
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z]+]]: memref<256xf32>, %[[ARG1:[0-9a-zA-Z]+]]: memref<256xf32>) {
 // CHECK: %{{.*}}:3 = scf.while ({{.*}}) : (vector<16xf32>, i32, !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>)
@@ -520,8 +553,9 @@ func.func @scf_while_and_condition(%arg0: memref<256xf32>, %arg1: memref<256xf32
   }
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_shape_cast_1d_to_2d_dim1_distributed(
 // CHECK-SAME:    %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME:    %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>) {
@@ -541,8 +575,9 @@ func.func @vector_shape_cast_1d_to_2d_dim1_distributed(%arg0: !xegpu.tensor_desc
   xegpu.store_nd %5, %arg1  : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16>
   return
 }
-
+}
 // -----
+gpu.module @test {
 // CHECK-LABEL: func.func @vector_shape_cast_1d_to_2d_dim0_broadcasted(
 // CHECK-SAME:     %[[ARG0:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>,
 // CHECK-SAME:     %[[ARG1:[0-9a-zA-Z]+]]: !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>) {
@@ -563,3 +598,4 @@ func.func @vector_shape_cast_1d_to_2d_dim0_broadcasted(%arg0: !xegpu.tensor_desc
   xegpu.store_nd %5, %arg1  : vector<16x16xf16>, !xegpu.tensor_desc<16x16xf16>
   return
 }
+}

>From a95b7cff2039650f9830d3c933631e94c7a9fba0 Mon Sep 17 00:00:00 2001
From: Artem Kroviakov <artem.kroviakov at intel.com>
Date: Thu, 16 Oct 2025 15:18:03 +0000
Subject: [PATCH 2/3] Default virtual dtor

---
 mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
index 0f5b1282f0e24..168f0abb17af5 100644
--- a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
+++ b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
@@ -145,7 +145,7 @@ struct uArch {
       : name(name), description(description),
         registerFileInfo(registerFileInfo), cacheInfo(cacheInfo),
         instructions(instructions) {}
-
+  virtual ~uArch() = default;
   // Get methods
   const std::string &getName() const { return name; }
 

>From 63d11b8a40953a1dea391688b22642e1950839c1 Mon Sep 17 00:00:00 2001
From: Artem Kroviakov <artem.kroviakov at intel.com>
Date: Thu, 16 Oct 2025 16:22:56 +0000
Subject: [PATCH 3/3] Add switch statements

---
 mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h |  8 +++++---
 mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h   | 12 +++++++++---
 2 files changed, 14 insertions(+), 6 deletions(-)

diff --git a/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h b/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
index 5cb6d61336391..c2f62d3e65fe3 100644
--- a/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
+++ b/mlir/include/mlir/Dialect/XeGPU/uArch/IntelGpuXe2.h
@@ -43,9 +43,11 @@ struct Xe2Plus : public uArch {
       : uArch(archName, archDescription, regInfo, cacheInfo, instrs),
         xeCore(xeCore) {}
   int getSubgroupSize() const override { return 16; }
-  int getPackedFormatBitSizeGatherScatter() const override { return 32; }
-  int getPackedFormatBitSize() const override { return 16; }
-  std::optional<int> getPackedFormatBitSizeDpasB() const override { return 32; }
+  unsigned getPackedFormatBitSizeGatherScatter() const override { return 32; }
+  unsigned getPackedFormatBitSize() const override { return 16; }
+  std::optional<unsigned> getPackedFormatBitSizeDpasB() const override {
+    return 32;
+  }
 };
 
 //===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
index 168f0abb17af5..09137a5547aab 100644
--- a/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
+++ b/mlir/include/mlir/Dialect/XeGPU/uArch/uArchBase.h
@@ -57,6 +57,12 @@ struct Instruction {
     switch (instKind) {
     case InstructionKind::DPAS:
       return "dpas";
+    case InstructionKind::STORE_ND:
+      return "store_nd";
+    case InstructionKind::LOAD_ND:
+      return "load_nd";
+    case InstructionKind::PREFETCH_ND:
+      return "prefetch_nd";
     }
     llvm_unreachable("Unknown InstructionKind");
   }
@@ -152,9 +158,9 @@ struct uArch {
   const std::string &getDescription() const { return description; }
 
   virtual int getSubgroupSize() const = 0;
-  virtual int getPackedFormatBitSizeGatherScatter() const = 0;
-  virtual int getPackedFormatBitSize() const = 0;
-  virtual std::optional<int> getPackedFormatBitSizeDpasB() const = 0;
+  virtual unsigned getPackedFormatBitSizeGatherScatter() const = 0;
+  virtual unsigned getPackedFormatBitSize() const = 0;
+  virtual std::optional<unsigned> getPackedFormatBitSizeDpasB() const = 0;
 
   std::shared_ptr<Instruction> getInstruction(InstructionKind instKind) const {
     assert(instructions.find(instKind) != instructions.end());



More information about the Mlir-commits mailing list