[Mlir-commits] [mlir] [MLIR][SparseTensor] Dense Outer Loop Ordering Strategy (PR #160168)

Govind Malasani llvmlistbot at llvm.org
Thu Oct 2 16:43:56 PDT 2025


https://github.com/gmalasan updated https://github.com/llvm/llvm-project/pull/160168

>From 9a776774a8b2b028287f37b932453dc0d855d249 Mon Sep 17 00:00:00 2001
From: gmalasan <145235389+gmalasan at users.noreply.github.com>
Date: Thu, 2 Oct 2025 19:37:48 -0400
Subject: [PATCH] [MLIR][SparseTensor] Add dense-outer loop ordering heuristic

---
 .../Dialect/SparseTensor/Transforms/Passes.h  | 21 ++++-
 .../Dialect/SparseTensor/Transforms/Passes.td |  7 ++
 .../Transforms/SparseReinterpretMap.cpp       | 24 +++--
 .../Transforms/SparseTensorPasses.cpp         | 11 ++-
 .../Transforms/Utils/IterationGraphSorter.cpp | 93 +++++++++++++++++--
 .../Transforms/Utils/IterationGraphSorter.h   | 17 +++-
 6 files changed, 151 insertions(+), 22 deletions(-)

diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
index 212f7b6f13c26..b401458f5ddc5 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.h
@@ -55,6 +55,18 @@ enum class SparseEmitStrategy {
   kDebugInterface, // generate only place-holder for sparse iteration
 };
 
+namespace sparse_tensor {
+
+/// Defines a strategy for loop ordering during sparse code generation.
+enum class LoopOrderingStrategy : unsigned {
+  kDefault,    ///< Default strategy (eagerly selects last loop in topological
+               ///< sort).
+  kDenseOuter, ///< Prefer dense, then sparse, then singleton dimensions
+               ///< outermost.
+};
+
+} // namespace sparse_tensor
+
 #define GEN_PASS_DECL
 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
 
@@ -71,11 +83,16 @@ std::unique_ptr<Pass> createSparseAssembler(bool directOut);
 // The SparseReinterpretMap pass.
 //===----------------------------------------------------------------------===//
 
-void populateSparseReinterpretMap(RewritePatternSet &patterns,
-                                  ReinterpretMapScope scope);
+void populateSparseReinterpretMap(
+    RewritePatternSet &patterns, ReinterpretMapScope scope,
+    sparse_tensor::LoopOrderingStrategy strategy =
+        sparse_tensor::LoopOrderingStrategy::kDefault);
 
 std::unique_ptr<Pass> createSparseReinterpretMapPass();
 std::unique_ptr<Pass> createSparseReinterpretMapPass(ReinterpretMapScope scope);
+std::unique_ptr<Pass>
+createSparseReinterpretMapPass(ReinterpretMapScope scope,
+                               sparse_tensor::LoopOrderingStrategy strategy);
 
 //===----------------------------------------------------------------------===//
 // The PreSparsificationRewriting pass.
diff --git a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
index 2513e106f5b06..0b8562e484f51 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/Transforms/Passes.td
@@ -81,6 +81,13 @@ def SparseReinterpretMap : Pass<"sparse-reinterpret-map", "ModuleOp"> {
          clEnumValN(mlir::ReinterpretMapScope::kExceptGeneric,
                     "except-generic",
                     "Run on operations expect linalg.generic (e.g., foreach)"))}]>,
+    Option<"loopOrderingStrategy", "loop-ordering-strategy", "mlir::sparse_tensor::LoopOrderingStrategy",
+       "mlir::sparse_tensor::LoopOrderingStrategy::kDefault",
+       "Set the loop ordering strategy for sparse code generation", [{llvm::cl::values(
+         clEnumValN(mlir::sparse_tensor::LoopOrderingStrategy::kDefault, "default",
+                    "Default strategy (eagerly selects last loop in topological sort)"),
+         clEnumValN(mlir::sparse_tensor::LoopOrderingStrategy::kDenseOuter, "dense-outer",
+                    "Prefer dense, then compressed, then singleton dimensions outermost"))}]>,
   ];
 }
 
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
index a1e35b87399ca..0fc5cc76de39c 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
@@ -59,7 +59,7 @@ struct DemapInsRewriter : public OpRewritePattern<SourceOp> {
 
 // Flattens an affine expression into a list of AffineDimExprs.
 struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
-  explicit AffineDimCollector(unsigned dimNum) : dims(dimNum){};
+  explicit AffineDimCollector(unsigned dimNum) : dims(dimNum) {};
   void visitDimExpr(AffineDimExpr expr) { dims.set(expr.getPosition()); }
   BitVector dims;
 };
@@ -67,7 +67,7 @@ struct AffineDimCollector : public AffineExprVisitor<AffineDimCollector> {
 // Flattens an affine expression into a list of AffineDimExprs.
 struct AffineExprAdmissibleVisitor
     : public AffineExprVisitor<AffineExprAdmissibleVisitor> {
-  explicit AffineExprAdmissibleVisitor(bool isOutput) : isOutput(isOutput){};
+  explicit AffineExprAdmissibleVisitor(bool isOutput) : isOutput(isOutput) {};
 
   // We only allow AffineDimExpr on output.
   void visitAddExpr(AffineBinaryOpExpr expr) {
@@ -407,7 +407,10 @@ struct GenericOpReinterpretMap
 };
 
 struct GenericOpScheduler : public OpRewritePattern<linalg::GenericOp> {
-  using OpRewritePattern::OpRewritePattern;
+  GenericOpScheduler(MLIRContext *context,
+                     sparse_tensor::LoopOrderingStrategy strategy)
+      : OpRewritePattern<linalg::GenericOp>(context), strategy(strategy) {}
+
   LogicalResult matchAndRewrite(linalg::GenericOp linalgOp,
                                 PatternRewriter &rewriter) const override {
     if (linalgOp.getNumDpsInits() != 1 || !linalgOp.hasPureTensorSemantics() ||
@@ -420,7 +423,8 @@ struct GenericOpScheduler : public OpRewritePattern<linalg::GenericOp> {
     if (linalgOp->hasAttr(sorted))
       return failure();
 
-    auto scheduler = IterationGraphSorter::fromGenericOp(linalgOp);
+    // Pass strategy to IterationGraphSorter.
+    auto scheduler = IterationGraphSorter::fromGenericOp(linalgOp, strategy);
     bool isAdmissible = false;
     AffineMap order;
     // A const list of all masks that we used for iteration graph
@@ -582,6 +586,9 @@ struct GenericOpScheduler : public OpRewritePattern<linalg::GenericOp> {
     // TODO: convert more than one?
     return failure();
   }
+
+private:
+  sparse_tensor::LoopOrderingStrategy strategy;
 };
 
 //===----------------------------------------------------------------------===//
@@ -786,12 +793,13 @@ struct ForeachOpDemapper
 
 } // namespace
 
-void mlir::populateSparseReinterpretMap(RewritePatternSet &patterns,
-                                        ReinterpretMapScope scope) {
+void mlir::populateSparseReinterpretMap(
+    RewritePatternSet &patterns, ReinterpretMapScope scope,
+    sparse_tensor::LoopOrderingStrategy strategy) {
   if (scope == ReinterpretMapScope::kAll ||
       scope == ReinterpretMapScope::kGenericOnly) {
-    patterns.add<GenericOpReinterpretMap, GenericOpScheduler>(
-        patterns.getContext());
+    patterns.add<GenericOpReinterpretMap>(patterns.getContext());
+    patterns.add<GenericOpScheduler>(patterns.getContext(), strategy);
   }
   if (scope == ReinterpretMapScope::kAll ||
       scope == ReinterpretMapScope::kExceptGeneric) {
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
index 153b9b170e5d3..b660e22154688 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
@@ -67,12 +67,13 @@ struct SparseReinterpretMap
   SparseReinterpretMap(const SparseReinterpretMap &pass) = default;
   SparseReinterpretMap(const SparseReinterpretMapOptions &options) {
     scope = options.scope;
+    loopOrderingStrategy = options.loopOrderingStrategy;
   }
 
   void runOnOperation() override {
     auto *ctx = &getContext();
     RewritePatternSet patterns(ctx);
-    populateSparseReinterpretMap(patterns, scope);
+    populateSparseReinterpretMap(patterns, scope, loopOrderingStrategy);
     (void)applyPatternsGreedily(getOperation(), std::move(patterns));
   }
 };
@@ -438,6 +439,14 @@ mlir::createSparseReinterpretMapPass(ReinterpretMapScope scope) {
   return std::make_unique<SparseReinterpretMap>(options);
 }
 
+std::unique_ptr<Pass> mlir::createSparseReinterpretMapPass(
+    ReinterpretMapScope scope, sparse_tensor::LoopOrderingStrategy strategy) {
+  SparseReinterpretMapOptions options;
+  options.scope = scope;
+  options.loopOrderingStrategy = strategy;
+  return std::make_unique<SparseReinterpretMap>(options);
+}
+
 std::unique_ptr<Pass> mlir::createPreSparsificationRewritePass() {
   return std::make_unique<PreSparsificationRewritePass>();
 }
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.cpp
index c7e463a5a5b49..7ebe20e9674ce 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.cpp
@@ -80,6 +80,52 @@ inline static bool includesDenseOutput(SortMask mask) {
   return includesAny(mask, SortMask::kIncludeDenseOutput);
 }
 
+/// Returns a sparsity rank for loop ordering: lower values indicate
+/// dimensions that should be placed in outer loops.
+/// 0 = Dense, 1 = Compressed, 2 = Singleton, 3 = Other/Unknown
+static unsigned getLoopSparsityRank(unsigned loop, ArrayRef<Value> allTensors,
+                                    ArrayRef<AffineMap> allMaps) {
+  unsigned bestRank = 3; // Default: most sparse (unknown/singleton-like)
+
+  for (auto [tensor, map] : llvm::zip(allTensors, allMaps)) {
+    // Check if this loop accesses this tensor
+    bool loopAccessesTensor = false;
+    unsigned tensorDim = 0;
+    for (AffineExpr expr : map.getResults()) {
+      if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
+        if (dimExpr.getPosition() == loop) {
+          loopAccessesTensor = true;
+          break;
+        }
+      }
+      tensorDim++;
+    }
+
+    if (loopAccessesTensor) {
+      const auto enc = getSparseTensorEncoding(tensor.getType());
+      if (!enc) {
+        // Dense tensor - highest priority
+        return 0;
+      } else {
+        // Sparse tensor - check the level type for this dimension
+        auto lvlTypes = enc.getLvlTypes();
+        if (tensorDim < lvlTypes.size()) {
+          auto lvlType = lvlTypes[tensorDim];
+          if (isDenseLT(lvlType)) {
+            return 0; // Dense level
+          } else if (isCompressedLT(lvlType)) {
+            bestRank = std::min(bestRank, 1u); // Compressed level
+          } else if (isSingletonLT(lvlType)) {
+            bestRank = std::min(bestRank, 2u); // Singleton level
+          }
+        }
+      }
+    }
+  }
+
+  return bestRank;
+}
+
 AffineMap IterationGraphSorter::topoSort() {
   // The sorted result will put the first Reduction iterator to the
   // latest possible position.
@@ -100,9 +146,40 @@ AffineMap IterationGraphSorter::topoSort() {
     // We always prefer a parallel loop over a reduction loop because putting
     // a reduction loop early might make the loop sequence inadmissible.
     auto &it = !parIt.empty() ? parIt : redIt;
-    auto src = it.back();
+
+    // Select loop based on strategy.
+    unsigned src;
+    switch (strategy) {
+    case sparse_tensor::LoopOrderingStrategy::kDefault:
+      src = it.back();
+      break;
+    case sparse_tensor::LoopOrderingStrategy::kDenseOuter: {
+      // Prefer dense, then compressed, then singleton dimensions outermost.
+      // Create combined tensor and map lists for analysis.
+      SmallVector<Value> allTensors = ins;
+      allTensors.push_back(out);
+      SmallVector<AffineMap> allMaps = loop2InsLvl;
+      allMaps.push_back(loop2OutLvl);
+
+      // Find loop with best (lowest) sparsity rank.
+      unsigned bestLoop = it[0];
+      unsigned bestRank = getLoopSparsityRank(bestLoop, allTensors, allMaps);
+
+      for (auto candidateLoop : it) {
+        unsigned rank = getLoopSparsityRank(candidateLoop, allTensors, allMaps);
+        if (rank < bestRank || (rank == bestRank && candidateLoop < bestLoop)) {
+          bestLoop = candidateLoop;
+          bestRank = rank;
+        }
+      }
+      src = bestLoop;
+      break;
+    }
+    }
+
     loopOrder.push_back(src);
-    it.pop_back();
+    // Remove the selected loop from the worklist.
+    it.erase(std::find(it.begin(), it.end(), src));
     // Update in-degree, and push 0-degree node into worklist.
     for (unsigned dst = 0; dst < numLoops; dst++) {
       if (itGraph[src][dst] && --inDegree[dst] == 0) {
@@ -122,8 +199,8 @@ AffineMap IterationGraphSorter::topoSort() {
   return AffineMap();
 }
 
-IterationGraphSorter
-IterationGraphSorter::fromGenericOp(linalg::GenericOp genericOp) {
+IterationGraphSorter IterationGraphSorter::fromGenericOp(
+    linalg::GenericOp genericOp, sparse_tensor::LoopOrderingStrategy strategy) {
   // Must be a demapped sparse kernel.
   assert(!hasAnyNonIdentityOperandsOrResults(genericOp) &&
          hasAnySparseOperandOrResult(genericOp) &&
@@ -140,14 +217,16 @@ IterationGraphSorter::fromGenericOp(linalg::GenericOp genericOp) {
       genericOp.getIteratorTypesArray();
 
   return IterationGraphSorter(std::move(ins), std::move(loopMap), out, outMap,
-                              std::move(iterTypes));
+                              std::move(iterTypes), strategy);
 }
 
 IterationGraphSorter::IterationGraphSorter(
     SmallVector<Value> &&ins, SmallVector<AffineMap> &&loop2InsLvl, Value out,
-    AffineMap loop2OutLvl, SmallVector<utils::IteratorType> &&iterTypes)
+    AffineMap loop2OutLvl, SmallVector<utils::IteratorType> &&iterTypes,
+    sparse_tensor::LoopOrderingStrategy strategy)
     : ins(std::move(ins)), loop2InsLvl(std::move(loop2InsLvl)), out(out),
-      loop2OutLvl(loop2OutLvl), iterTypes(std::move(iterTypes)) {
+      loop2OutLvl(loop2OutLvl), iterTypes(std::move(iterTypes)),
+      strategy(strategy) {
   // One map per tensor.
   assert(loop2InsLvl.size() == ins.size());
   // All the affine maps have the same number of dimensions (loops).
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.h b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.h
index a6abe9eb76c47..b2a16e9382758 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.h
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/IterationGraphSorter.h
@@ -13,6 +13,7 @@
 #ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_ITERATIONGRAPHSORTER_H_
 #define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_ITERATIONGRAPHSORTER_H_
 
+#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
 #include "mlir/IR/AffineMap.h"
 
 namespace mlir {
@@ -41,9 +42,12 @@ enum class SortMask : unsigned {
 
 class IterationGraphSorter {
 public:
-  /// Factory method that construct an iteration graph sorter
-  /// for the given linalg.generic operation.
-  static IterationGraphSorter fromGenericOp(linalg::GenericOp genericOp);
+  /// Factory method that constructs an iteration graph sorter
+  /// for the given linalg.generic operation with a specific loop ordering
+  /// strategy.
+  static IterationGraphSorter
+  fromGenericOp(linalg::GenericOp genericOp,
+                sparse_tensor::LoopOrderingStrategy strategy);
 
   /// Returns a permutation that represents the scheduled loop order.
   /// Note that the returned AffineMap could be null if the kernel
@@ -58,7 +62,9 @@ class IterationGraphSorter {
   IterationGraphSorter(SmallVector<Value> &&ins,
                        SmallVector<AffineMap> &&loop2InsLvl, Value out,
                        AffineMap loop2OutLvl,
-                       SmallVector<utils::IteratorType> &&iterTypes);
+                       SmallVector<utils::IteratorType> &&iterTypes,
+                       sparse_tensor::LoopOrderingStrategy strategy =
+                           sparse_tensor::LoopOrderingStrategy::kDefault);
 
   // Adds all the constraints in the given loop to level map.
   void addConstraints(Value t, AffineMap loop2LvlMap);
@@ -84,6 +90,9 @@ class IterationGraphSorter {
 
   // InDegree used for topo sort.
   std::vector<unsigned> inDegree;
+
+  // Loop ordering strategy.
+  sparse_tensor::LoopOrderingStrategy strategy;
 };
 
 } // namespace sparse_tensor



More information about the Mlir-commits mailing list