[Mlir-commits] [mlir] [mlir][x86vector] Lower vector.contract to FMA or packed type dot-product (PR #168074)

Adam Siemieniuk llvmlistbot at llvm.org
Thu Nov 20 07:09:05 PST 2025


================
@@ -0,0 +1,277 @@
+//===- VectorContractToPackedTypeDotProduct.cpp ---------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
+#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
+#include "mlir/Dialect/X86Vector/Transforms.h"
+#include "mlir/Dialect/X86Vector/X86VectorDialect.h"
+
+#include "mlir/IR/BuiltinAttributes.h"
+#include "mlir/IR/Dominance.h"
+#include "mlir/IR/PatternMatch.h"
+
+#include "mlir/Pass/Pass.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+using namespace mlir;
+using namespace mlir::vector;
+using namespace mlir::x86vector;
+
+static FailureOr<SmallVector<mlir::utils::IteratorType>>
+inferIteratorsFromOutMap(AffineMap map) {
+  if (!map.isProjectedPermutation())
+    return failure();
+  SmallVector<mlir::utils::IteratorType> iterators(
+      map.getNumDims(), mlir::utils::IteratorType::reduction);
+  for (auto expr : map.getResults())
+    if (auto dim = dyn_cast<AffineDimExpr>(expr))
+      iterators[dim.getPosition()] = mlir::utils::IteratorType::parallel;
+  return iterators;
+}
+
+static bool isInVnniLayout(Operation *op, ArrayRef<AffineMap> indexingMaps,
+                           std::optional<unsigned> blockingFactor) {
+  // Narrow down type operations - VNNI only applies to contractions.
+  FailureOr<linalg::ContractionDimensions> dims =
+      linalg::inferContractionDims(indexingMaps);
+  if (failed(dims))
+    return false;
+
+  auto matA = op->getOperand(0);
+  auto matB = op->getOperand(1);
+  auto typeA = dyn_cast<ShapedType>(matA.getType());
+  auto typeB = dyn_cast<ShapedType>(matB.getType());
+  unsigned rankA = typeA.getRank();
+  unsigned rankB = typeB.getRank();
+  // VNNI format requires at least 1 parallel and 2 reduction dimensions.
+  if (rankA < 3 || rankB < 3)
+    return false;
+
+  // At least two reduction dimensions are expected:
+  // one for the VNNI factor and one for the K dimension
+  if (dims->k.size() < 2)
+    return false;
+
+  // Validate affine maps - VNNI computation should be defined by the two
+  // innermost reduction iterators.
+  // The input matrix dimensions layout must match the following:
+  //   - matrix A - [...][K/vnniFactor][vnniFactor]
+  //   - matrix B - [...][K/vnniFactor][N][vnniFactor]
+  auto maybeIters = inferIteratorsFromOutMap(indexingMaps[2]);
+  if (failed(maybeIters))
+    return false;
+  SmallVector<mlir::utils::IteratorType> iteratorTypes = *maybeIters;
+  AffineMap mapA = indexingMaps[0];
+  AffineMap mapB = indexingMaps[1];
+
+  auto vnniDimA = dyn_cast<AffineDimExpr>(mapA.getResult(rankA - 1));
+  auto vnniDimB = dyn_cast<AffineDimExpr>(mapB.getResult(rankB - 1));
+  if (!vnniDimA || !vnniDimB || vnniDimA != vnniDimB ||
+      iteratorTypes[vnniDimA.getPosition()] !=
+          mlir::utils::IteratorType::reduction)
+    return false;
+  auto redDimA = dyn_cast<AffineDimExpr>(mapA.getResult(rankA - 2));
+  auto redDimB = dyn_cast<AffineDimExpr>(mapB.getResult(rankB - 3));
+  if (!redDimA || !redDimB || redDimA != redDimB ||
+      iteratorTypes[redDimA.getPosition()] !=
+          mlir::utils::IteratorType::reduction)
+    return false;
+  auto parallelDimB = dyn_cast<AffineDimExpr>(mapB.getResult(rankB - 2));
+  if (!parallelDimB || iteratorTypes[parallelDimB.getPosition()] !=
+                           mlir::utils::IteratorType::parallel)
+    return false;
+
+  // VNNI factor must be:
+  //   - the innermost inputs' dimension
+  //   - statically known
+  //   - multiple of 2 or equal to the specified factor
+  auto vnniDimSize = typeB.getShape().back();
+  if (vnniDimSize == ShapedType::kDynamic || vnniDimSize == 0 ||
+      vnniDimSize % 2 != 0)
+    return false;
+  if (typeA.getShape().back() != vnniDimSize)
+    return false;
+  if (blockingFactor && vnniDimSize != *blockingFactor)
+    return false;
+
+  // The split reduction dimension size should also match.
+  if (typeA.getShape().end()[-2] != typeB.getShape().end()[-3])
+    return false;
+
+  return true;
+}
+
+// Implements packed type outer product contraction as a sequence
+// of broadcast and packed dot-product operations.
+//
+// For example - for F32 type:
+// ```
+//   vector.contract <1x1x2xbf16>, <1x16x2xbf16> into <1x16xf32>
+// ```
+// to
+// ```
+//   vector.broadcast %lhs to <32xbf16>
+//   x86vector.avx512.dot vector<32xbf16> -> vector<16xf32>
+// ```
+struct VectorContractToPackedTypeDotProduct
+    : public OpRewritePattern<vector::ContractionOp> {
+  using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
+
+  LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
----------------
adam-smnk wrote:

It's missing shape validation of operands. The AVX dot ops can handle only specific vector lengths.

For now, we should reject all other shapes and assume that padding/masking should've been done earlier.

https://github.com/llvm/llvm-project/pull/168074


More information about the Mlir-commits mailing list