[Mlir-commits] [mlir] [mlir][vector] Refactor VectorUnrollOpInterface ops. (NFC) (PR #166462)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Tue Nov 4 15:08:34 PST 2025
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-vector
@llvm/pr-subscribers-mlir
Author: Erick Ochoa Lopez (amd-eochoalo)
<details>
<summary>Changes</summary>
While looking into unrolling I found that the description of the getShapeForUnroll function was wrong and that some operations use the default implementation of this interface but still implement their own.
---
Full diff: https://github.com/llvm/llvm-project/pull/166462.diff
3 Files Affected:
- (modified) mlir/include/mlir/Dialect/Vector/IR/VectorOps.td (+6-6)
- (modified) mlir/include/mlir/Interfaces/VectorInterfaces.td (+2-3)
- (modified) mlir/lib/Dialect/Vector/IR/VectorOps.cpp (-28)
``````````diff
diff --git a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
index 6e15b1e7df606..ba110ce3e5f22 100644
--- a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
+++ b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
@@ -360,7 +360,7 @@ def Vector_MultiDimReductionOp :
def Vector_BroadcastOp :
Vector_Op<"broadcast", [Pure,
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>,
DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
@@ -731,7 +731,7 @@ def Vector_ExtractOp :
def Vector_FMAOp :
Op<Vector_Dialect, "fma", [
Pure, AllTypesMatch<["lhs", "rhs", "acc", "result"]>,
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>
] # ElementwiseMappable.traits>,
Arguments<(ins VectorOfAnyRankOf<[AnyFloat]>:$lhs,
VectorOfAnyRankOf<[AnyFloat]>:$rhs,
@@ -1244,7 +1244,7 @@ def Vector_ExtractStridedSliceOp :
def Vector_TransferReadOp :
Vector_Op<"transfer_read", [
DeclareOpInterfaceMethods<VectorTransferOpInterface>,
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>,
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<ConditionallySpeculatable>,
@@ -1652,7 +1652,7 @@ def Vector_TransferWriteOp :
}
def Vector_LoadOp : Vector_Op<"load", [
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>,
DeclareOpInterfaceMethods<MemorySpaceCastConsumerOpInterface>
]> {
let summary = "reads an n-D slice of memory into an n-D vector";
@@ -2048,7 +2048,7 @@ def Vector_GatherOp :
Vector_Op<"gather", [
DeclareOpInterfaceMethods<MaskableOpInterface>,
DeclareOpInterfaceMethods<MemorySpaceCastConsumerOpInterface>,
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>
]>,
Arguments<(ins Arg<TensorOrMemRef<[AnyType]>, "", [MemRead]>:$base,
Variadic<Index>:$offsets,
@@ -2739,7 +2739,7 @@ def Vector_MaskOp : Vector_Op<"mask", [
def Vector_TransposeOp :
Vector_Op<"transpose", [Pure,
DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
- DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface>,
PredOpTrait<"operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]> {
let summary = "vector transpose operation";
diff --git a/mlir/include/mlir/Interfaces/VectorInterfaces.td b/mlir/include/mlir/Interfaces/VectorInterfaces.td
index 6838c16fdf0fe..1223f5c0704ab 100644
--- a/mlir/include/mlir/Interfaces/VectorInterfaces.td
+++ b/mlir/include/mlir/Interfaces/VectorInterfaces.td
@@ -24,9 +24,8 @@ def VectorUnrollOpInterface : OpInterface<"VectorUnrollOpInterface"> {
let methods = [
InterfaceMethod<
/*desc=*/[{
- Return the shape ratio of unrolling to the target vector shape
- `targetShape`. Return `std::nullopt` if the op cannot be unrolled to the
- target vector shape.
+ Return the shape of the vector of this operation, which may be used to decide unrolling factors.
+ Return std::nullopt if the op is not applicable for unrolling.
}],
/*retTy=*/"::std::optional<::llvm::SmallVector<int64_t, 4>>",
/*methodName=*/"getShapeForUnroll",
diff --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
index daef0ba02100a..b030b060c6ba0 100644
--- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
+++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
@@ -2374,14 +2374,6 @@ static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
results.push_back(llvm::cast<IntegerAttr>(attr).getInt());
}
-//===----------------------------------------------------------------------===//
-// FmaOp
-//===----------------------------------------------------------------------===//
-
-std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getVectorType().getShape());
-}
-
//===----------------------------------------------------------------------===//
// ToElementsOp
//===----------------------------------------------------------------------===//
@@ -2782,10 +2774,6 @@ void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
setResultRanges(getResult(), argRanges.front());
}
-std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getResultVectorType().getShape());
-}
-
/// Return the dimensions of the result vector that were formerly ones in the
/// source tensor and thus correspond to "dim-1" broadcasting.
static llvm::SetVector<int64_t>
@@ -5100,10 +5088,6 @@ OpFoldResult TransferReadOp::fold(FoldAdaptor) {
return OpFoldResult();
}
-std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getVectorType().getShape());
-}
-
void TransferReadOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
@@ -5778,10 +5762,6 @@ OpFoldResult LoadOp::fold(FoldAdaptor) {
return OpFoldResult();
}
-std::optional<SmallVector<int64_t, 4>> LoadOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getVectorType().getShape());
-}
-
FailureOr<std::optional<SmallVector<Value>>>
LoadOp::bubbleDownCasts(OpBuilder &builder) {
return mlir::detail::bubbleDownInPlaceMemorySpaceCastImpl(getBaseMutable(),
@@ -5986,10 +5966,6 @@ Type GatherOp::getExpectedMaskType() {
vecType.getScalableDims());
}
-std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getVectorType().getShape());
-}
-
/// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...]
static LogicalResult isZeroBasedContiguousSeq(Value indexVec) {
auto vecType = dyn_cast<VectorType>(indexVec.getType());
@@ -6720,10 +6696,6 @@ LogicalResult vector::TransposeOp::verify() {
return success();
}
-std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
- return llvm::to_vector<4>(getResultVectorType().getShape());
-}
-
void TransposeOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
``````````
</details>
https://github.com/llvm/llvm-project/pull/166462
More information about the Mlir-commits
mailing list