[Mlir-commits] [mlir] Introduce `arith.scaling_extf` and `arith.scaling_truncf` (PR #141965)
Prashant Kumar
llvmlistbot at llvm.org
Thu May 29 11:54:36 PDT 2025
================
@@ -1215,6 +1215,44 @@ def Arith_ExtFOp : Arith_FToFCastOp<"extf", [DeclareOpInterfaceMethods<ArithFast
attr-dict `:` type($in) `to` type($out) }];
}
+//===----------------------------------------------------------------------===//
+// Scaling ExtFOp
+//===----------------------------------------------------------------------===//
+def Arith_ScalingExtFOp
+ : Arith_Op<
+ "scaling_extf", [Pure, SameInputOutputTensorDims,
+ DeclareOpInterfaceMethods<ArithFastMathInterface>,
+ DeclareOpInterfaceMethods<CastOpInterface>]>,
+ Arguments<(ins FloatLike:$in, FloatLike:$scale,
+ OptionalAttr<Arith_FastMathAttr>:$fastmath)>,
+ Results<(outs FloatLike:$out)> {
+ let summary =
+ "cast from floating-point to larger floating-point using provided scales";
+ let description = [{
+ Implements micro-scaling floating point ExtF op. It expects both scales and input operand to be of same shape.
+ Scale operand is expected to be of type f8E8M0. But that can be relaxed in future.
+ Scale is usually calculated per block.
+ Let's say originally input is shape <dim1 x dim2 x dim3 .. x dimN> then, given blockSize it can be reshaped to <dim1 x dim2 x ... (dimN/blockSize) x blockSize>.
+ Scales will be calculated on the block axis. Therefore scale will be of shape <dim1 x dim2 x dim3 ... (dimN/blockSize) x 1>.
+ Before calling into `arith.scaling_extf`, scales must be broadcasted appropariately to make it as same shape as input making `arith.scaling_extf` an elemenwise op.
+ In above example. scales should be broadcasted to shape of <dim1 x dim2 x dim3 x ... (dimN/blockSize) x blockSize>.
+ ```
+ resultTy = get_type(result)
+ scaleTy = get_type(scale)
+ inputTy = get_type(input)
+ scale.exponent = arith.truncf(scale) : scaleTy to f8E8M0
+ scale.bcast = broadcast_to_same_shape_as(result)
+ scale.extf = arith.extf(sale.bcast) : f8E8M0 to resultTy
+ input.extf = arith.extf(input) : inputTy to resultTy
+ result = arith.mulf(scale.extf, input.extf)
+ ```
+ It propagates NaN values. Therefore if either scale or input operand element value is a NaN then output element value will also be a NaN.
----------------
pashu123 wrote:
```suggestion
It propagates NaN values. Therefore, if either scale or the input element contains NaN, then the output element value will also be a NaN.
```
https://github.com/llvm/llvm-project/pull/141965
More information about the Mlir-commits
mailing list