[Mlir-commits] [mlir] [mlir][tensor] Loosen restrictions on folding dynamic reshapes (PR #137963)

Artem Gindinson llvmlistbot at llvm.org
Fri May 23 07:55:10 PDT 2025


================
@@ -28,67 +32,319 @@ mlir::getReassociationIndicesForReshape(ShapedType sourceType,
   return std::nullopt;
 }
 
-std::optional<SmallVector<ReassociationIndices>>
-mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
-                                         ArrayRef<int64_t> targetShape) {
-  if (sourceShape.size() <= targetShape.size())
-    return std::nullopt;
-  unsigned sourceDim = 0;
-  SmallVector<ReassociationIndices> reassociationMap;
-  reassociationMap.reserve(targetShape.size());
+namespace {
+/// A simple struct to represent ReassociationIndices as an inclusive interval.
+/// It's designed to be feasibly minimal, so the call sites should manage the
+/// validity of the range manually.
+struct ReassociationIndexRange {
+  /// FIXME: Signed type is used for consistency with ReassociationIndices.
+  /// We should consider refactoring all reassociation utilities to use unsigned
+  /// types.
+  int64_t leftIdx = 0, rightIdx = 0;
+
+  /// Util for manual checks of the range's validity
+  LogicalResult verify() const {
+    return leftIdx >= 0 && (leftIdx <= rightIdx) ? success() : failure();
+  }
+
+  /// Checks range's containment within another range. Treats the edges
+  /// non-exclusively.
+  bool isInRange(const ReassociationIndexRange &outerRange) const {
+    return leftIdx >= outerRange.leftIdx && rightIdx <= outerRange.rightIdx;
+  }
+
+  unsigned size() const {
+    assert(succeeded(verify()));
+    return rightIdx - leftIdx + 1;
+  }
+  bool containsSingleIndex() const { return size() == 1; }
+
+  void expandRight() { ++rightIdx; }
+  void shrinkLeft() { ++leftIdx; }
+
+  /// Implements arithmetic XOR semantics to get non-overlapping indices between
+  /// ranges.
+  ReassociationIndices operator^(ReassociationIndexRange &rhs) const {
+    ReassociationIndices result;
+    result.reserve(size() + rhs.size() / 2); // Attempt to amortize
+    for (int64_t idx = this->leftIdx; idx <= this->rightIdx; ++idx) {
+      if (idx < rhs.leftIdx || idx > rhs.rightIdx)
+        result.push_back(idx);
+    }
+    for (int64_t rhsIndex = rhs.leftIdx; rhsIndex <= rhs.rightIdx; ++rhsIndex) {
+      if (rhsIndex < leftIdx || rhsIndex > rightIdx)
+        result.push_back(rhsIndex);
+    }
+    return result;
+  }
+
+  /// Converts the range into ReassociationIndices.
+  ReassociationIndices getFullIndices() const {
+    ReassociationIndices result;
+    for (int64_t idx = leftIdx; idx <= rightIdx; ++idx) {
+      result.push_back(idx);
+    }
+    return result;
+  }
+};
+
+/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
+/// sequence that can be collapsed into a dynamic dimension (at least one must
+/// be present in the source).
+/// By default, lazily returns once the first dynamic dimension has been found.
+/// Setting `matchGreedily` as `true` will also mark all subsequent
+/// source dimensions for collapsing into the target.
+FailureOr<ReassociationIndexRange>
+findReassociationRangeForDynamicDim(ArrayRef<int64_t> sourceShape,
+                                    int64_t sourceStartIdx,
+                                    bool matchGreedily = false) {
+  ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
+  const unsigned numSourceDims = sourceShape.size();
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+  if (!iterationRange.isInRange(sourceShapeAsRange))
+    return failure();
+  auto resultRange = iterationRange;
+
+  bool foundDynamic = false;
+  for (; iterationRange.isInRange(sourceShapeAsRange);
+       iterationRange.expandRight()) {
+    int64_t sourceSize = sourceShape[iterationRange.rightIdx];
+    if (foundDynamic && !matchGreedily)
+      break;
+    if (sourceSize == ShapedType::kDynamic)
+      foundDynamic = true;
+    resultRange = iterationRange;
+  }
+  if (!foundDynamic)
+    return failure();
+  return resultRange;
+}
+
+/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
+/// sequence of static dimensions such that their product matches `targetSize`.
+/// By default, lazily returns once the product matches the target size. Setting
+/// `matchGreedily` as `true` will append all neighboring unit dimensions
+/// (dimensions of 1) to the match.
+FailureOr<ReassociationIndexRange>
+findReassociationRangeForSize(ArrayRef<int64_t> sourceShape,
+                              int64_t sourceStartIdx, int64_t targetSize,
+                              bool matchGreedily = false) {
+  ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
+  const unsigned numSourceDims = sourceShape.size();
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+  if (!iterationRange.isInRange(sourceShapeAsRange))
+    return failure();
+  auto resultRange = iterationRange;
 
-  ReassociationIndices currIndices;
   int64_t prodOfCollapsedDims = 1;
-  while (sourceDim < sourceShape.size()) {
-    unsigned targetDim = reassociationMap.size();
-    // If we have mapped all the target dimensions stop and handle the remaining
-    // tail of size-1 dimensions explicitly.
-    if (targetDim == targetShape.size())
+  bool reachedTargetDimSize = false;
+  while (iterationRange.isInRange(sourceShapeAsRange)) {
+    int64_t sourceSize = sourceShape[iterationRange.rightIdx];
+    if (reachedTargetDimSize && !matchGreedily)
+      break;
+    if (sourceSize == ShapedType::kDynamic) {
+      if (reachedTargetDimSize)
+        break;
+      // Reassociation for a static dim cannot include a dynamic dim. Reset
+      // induction variables to essentially restart the loop from the next
+      // source dimension.
+      prodOfCollapsedDims = 1;
+      resultRange = {iterationRange.rightIdx + 1, iterationRange.rightIdx + 1};
+      iterationRange = resultRange;
+      continue;
+    }
+    prodOfCollapsedDims *= sourceSize;
+    if (prodOfCollapsedDims > targetSize && reachedTargetDimSize)
       break;
+    // If the target size has been exceeded without matching, we need to shift
+    // the range start right. From the start of the range, roll back the
+    // multiplication until the target size exceeds the product again.
+    while (prodOfCollapsedDims > targetSize &&
+           !iterationRange.containsSingleIndex()) {
+      int64_t frontSourceSize = sourceShape[iterationRange.leftIdx];
+      prodOfCollapsedDims /= frontSourceSize;
+      iterationRange.shrinkLeft();
+    }
+    resultRange = iterationRange;
+    // We could've reached the target size with the current dimension,
+    // also as a result of the above shift to right.
+    if (prodOfCollapsedDims == targetSize)
+      reachedTargetDimSize = true;
+    // Increment the iteration range
+    iterationRange.expandRight();
+  }
+  if (!reachedTargetDimSize)
+    return failure();
+  return resultRange;
+}
+
+/// Attempts to find a valid collapsing reassociation of `sourceShape` into
+/// `targetShape` through a simple traversal. If successful, an array of source
+/// index ranges is returned, correspondingly to each dimension in the target
+/// shape. The resulting indices shall fully cover the `sourceShape` without
+/// overlaps.
+///
+/// The algorithm is essentially a lazy one, searching for non-greedy matches -
+/// it will only yield a greedy match for the last target dimension.
+/// FIXME: The algorithm can only backtrack when it needs to append an offset
+/// for a static target dimension to the preceding dynamic one (this retains the
+/// linear complexity). As feasible, consider adding further backtracking
+/// routines to enable more reassociations, e.g.:
+/// - ?x2x?x2 into ?x2
+FailureOr<SmallVector<ReassociationIndexRange>>
+findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
+                                   ArrayRef<int64_t> targetShape) {
+  unsigned numSourceDims = sourceShape.size(),
+           numTargetDims = targetShape.size();
+  assert(numSourceDims > numTargetDims);
+  ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
+
+  SmallVector<ReassociationIndexRange> reassocRanges;
+  reassocRanges.reserve(numTargetDims);
+  // We'll iterate in strides of 2 to enable pseudo-backtracking for simple
+  // cases, e.g.:
+  // - ?x2x3x5 into ?x15
+  std::optional<int64_t> prevTargetSize = std::nullopt;
+  for (unsigned targetDimIdx = 0, sourceDimIdx = 0;
+       targetDimIdx < numTargetDims; ++targetDimIdx) {
+    int64_t targetSize = targetShape[targetDimIdx];
+    // Simply check if there are any subsequent target dimensions left - if not,
+    // the match must be made greedily.
+    bool isLastTargetDim = targetDimIdx == numTargetDims - 1;
+    bool shouldMatchGreedily = isLastTargetDim;
+    FailureOr<ReassociationIndexRange> sourceRange;
+    if (targetSize == ShapedType::kDynamic) {
+      sourceRange = findReassociationRangeForDynamicDim(
+          sourceShape, sourceDimIdx, shouldMatchGreedily);
+    } else {
+      sourceRange = findReassociationRangeForSize(
+          sourceShape, sourceDimIdx, targetSize, shouldMatchGreedily);
+    }
 
-    int64_t currTargetShape = targetShape[targetDim];
-    while (sourceDim < (sourceShape.size() - 1) &&
-           sourceShape[sourceDim] != ShapedType::kDynamic &&
-           prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
-      prodOfCollapsedDims *= sourceShape[sourceDim];
-      currIndices.push_back(sourceDim++);
+    // Run sanity checks on the returned index range.
+    if (failed(sourceRange) || failed(sourceRange->verify()) ||
+        !sourceRange->isInRange(sourceShapeAsRange))
+      return failure();
+    if (sourceRange->leftIdx > sourceDimIdx) {
+      // If some source dimensions had to be skipped in order to find a match,
+      // they must be collapsed into the directly preceding dynamic dimension.
+      if (!prevTargetSize || prevTargetSize != ShapedType::kDynamic)
+        return failure();
+      reassocRanges.back().rightIdx = sourceRange->leftIdx - 1;
     }
 
-    // If the current expanded dimension is dynamic, then the collapsed
-    // dimensions should also be dynamic and product of all previous unprocessed
-    // dimensions of the expanded shape should be 1.
-    if (sourceShape[sourceDim] == ShapedType::kDynamic &&
-        (currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
-      return std::nullopt;
-
-    // If the collapsed dim is dynamic, the current expanded dim should also
-    // be dynamic.
-    if (currTargetShape == ShapedType::kDynamic &&
-        sourceShape[sourceDim] != ShapedType::kDynamic)
-      return std::nullopt;
-
-    // For static shapes, if the product of dimensions of the expanded shape
-    // should match the collapsed dimension shape.
-    if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
-      return std::nullopt;
-
-    currIndices.push_back(sourceDim++);
-    reassociationMap.emplace_back(ReassociationIndices{});
-    std::swap(reassociationMap.back(), currIndices);
-    prodOfCollapsedDims = 1;
+    // Store the gathered information as required for the next iteration.
+    prevTargetSize = targetSize;
+    sourceDimIdx = sourceRange->rightIdx + 1;
+    reassocRanges.emplace_back(std::move(*sourceRange));
+  }
+  // Fail if the source shape wasn't a full match for the target shape. We only
+  // need to check the last recorded index - any other gaps should have been
+  // mended by the main loop.
+  if (reassocRanges.back().rightIdx < sourceShapeAsRange.rightIdx)
+    return failure();
+  return reassocRanges;
+}
+
+/// A variant of `findReassociationRangesForCollapse(...)` that can also scan
+/// the shapes right-to-left.
+FailureOr<SmallVector<ReassociationIndexRange>>
+findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
+                                   ArrayRef<int64_t> targetShape,
+                                   bool iterateRightToLeft) {
+  if (!iterateRightToLeft)
+    return findReassociationRangesForCollapse(sourceShape, targetShape);
+  // FIXME: It would be preferable to avoid the expensive copies. At the moment,
+  // this approach is chosen for readability of the main implementation.
+  auto sourceToReverse = sourceShape.vec(), targetToReverse = targetShape.vec();
+  std::reverse(sourceToReverse.begin(), sourceToReverse.end());
+  std::reverse(targetToReverse.begin(), targetToReverse.end());
+  auto invertedRanges =
+      findReassociationRangesForCollapse(sourceToReverse, targetToReverse);
+  if (failed(invertedRanges))
+    return failure();
+  auto rangesToInvert = *invertedRanges;
+  unsigned numSourceDims = sourceShape.size();
+  // We have received the ranges for inverted shapes. Now we have to invert
+  // the ranges back to correspond with the original source shape.
+  for (auto &range : rangesToInvert) {
+    if (failed(range.verify()))
+      return failure();
----------------
AGindinson wrote:

Good point, to be frank I'd even skip the assert

https://github.com/llvm/llvm-project/pull/137963


More information about the Mlir-commits mailing list