[Mlir-commits] [mlir] [mlir][vector] linearize vector.insert_strided_slice (flatten to vector.shuffle) (PR #138725)
James Newling
llvmlistbot at llvm.org
Fri May 9 10:31:29 PDT 2025
================
@@ -129,88 +215,110 @@ struct LinearizeVectorExtractStridedSlice final
: OpConversionPattern(typeConverter, context, benefit) {}
LogicalResult
- matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
+ matchAndRewrite(vector::ExtractStridedSliceOp extractStridedSliceOp,
+ OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
- VectorType dstType =
- getTypeConverter()->convertType<VectorType>(extractOp.getType());
- assert(dstType && "vector type destination expected.");
- if (extractOp.getVector().getType().isScalable() || dstType.isScalable())
- return rewriter.notifyMatchFailure(extractOp,
- "scalable vectors are not supported.");
- ArrayAttr offsets = extractOp.getOffsets();
- ArrayAttr sizes = extractOp.getSizes();
- ArrayAttr strides = extractOp.getStrides();
- if (!isConstantIntValue(strides[0], 1))
- return rewriter.notifyMatchFailure(
- extractOp, "Strided slice with stride != 1 is not supported.");
- Value srcVector = adaptor.getVector();
- // If kD offsets are specified for nD source vector (n > k), the granularity
- // of the extraction is greater than 1. In this case last (n-k) dimensions
- // form the extraction granularity.
- // Example :
- // vector.extract_strided_slice %src {
- // offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} :
- // vector<4x8x8xf32> to vector<2x2x8xf32>
- // Here, extraction granularity is 8.
- int64_t extractGranularitySize = 1;
- int64_t nD = extractOp.getSourceVectorType().getRank();
- int64_t kD = (int64_t)offsets.size();
- int64_t k = kD;
- while (k < nD) {
- extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k];
- ++k;
+ VectorType flatOutputType = getTypeConverter()->convertType<VectorType>(
+ extractStridedSliceOp.getType());
+ assert(flatOutputType && "vector type expected");
+
+ if (!stridesAllOne(extractStridedSliceOp)) {
+ return rewriter.notifyMatchFailure(extractStridedSliceOp,
+ "strides other than 1 not supported");
}
- // Get total number of extracted slices.
- int64_t nExtractedSlices = 1;
- for (Attribute size : sizes) {
- nExtractedSlices *= cast<IntegerAttr>(size).getInt();
+
+ FailureOr<SmallVector<int64_t>> offsets =
+ intsFromArrayAttr(extractStridedSliceOp.getOffsets());
+ if (failed(offsets)) {
+ return rewriter.notifyMatchFailure(extractStridedSliceOp,
+ "failed to get integer offsets");
}
- // Compute the strides of the source vector considering first k dimensions.
- llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize);
- for (int i = kD - 2; i >= 0; --i) {
- sourceStrides[i] = sourceStrides[i + 1] *
- extractOp.getSourceVectorType().getShape()[i + 1];
+
+ ArrayRef<int64_t> inputShape =
+ extractStridedSliceOp.getSourceVectorType().getShape();
+
+ ArrayRef<int64_t> outputShape = extractStridedSliceOp.getType().getShape();
+
+ SmallVector<int64_t> indices = getFlattenedStridedSliceIndices(
+ outputShape, inputShape, offsets.value());
+
+ Value srcVector = adaptor.getVector();
+ rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
+ extractStridedSliceOp, flatOutputType, srcVector, srcVector, indices);
+ return success();
+ }
+};
+
+/// This pattern converts a vector.insert_strided_slice operation into a
+/// vector.shuffle operation that has rank-1 (linearized) operands and result.
+///
+/// For example, the following:
+/// ```
+/// %0 = vector.insert_strided_slice %to_store, %into
+/// {offsets = [1, 0, 0, 0], strides = [1, 1]}
+/// : vector<2x2xi8> into vector<2x1x3x2xi8>
+/// ```
+///
+/// is converted to
+/// ```
+/// %to_store_1d
+/// = vector.shape_cast %to_store : vector<2x2xi8> to vector<4xi8>
+/// %into_1d = vector.shape_cast %into : vector<2x1x3x2xi8> to vector<12xi8>
+/// %out_1d = vector.shuffle %into_1d, %to_store_1d [ shuffle_indices_1d ]
+/// %out_nd = vector.shape_cast %out_1d : vector<12xi8> to vector<2x1x3x2xi8>
+/// ```
+///
+/// where shuffle_indices_1d in this case is
+/// [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 10, 11].
+/// ^^^^^^^^^^^^^^
+/// to_store_1d
+///
+struct LinearizeVectorInsertStridedSlice final
+ : public mlir::OpConversionPattern<mlir::vector::InsertStridedSliceOp> {
+ using OpConversionPattern::OpConversionPattern;
+ LinearizeVectorInsertStridedSlice(const TypeConverter &typeConverter,
+ MLIRContext *context,
+ PatternBenefit benefit = 1)
+ : OpConversionPattern(typeConverter, context, benefit) {}
+
+ LogicalResult
+ matchAndRewrite(vector::InsertStridedSliceOp insertStridedSliceOp,
+ OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const override {
+
+ if (!stridesAllOne(insertStridedSliceOp)) {
+ return rewriter.notifyMatchFailure(insertStridedSliceOp,
+ "strides other than 1 not supported");
}
- // Final shuffle indices has nExtractedSlices * extractGranularitySize
- // elements.
- llvm::SmallVector<int64_t, 4> indices(nExtractedSlices *
- extractGranularitySize);
- // Compute the strides of the extracted kD vector.
- llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1);
- // Compute extractedStrides.
- for (int i = kD - 2; i >= 0; --i) {
- extractedStrides[i] =
- extractedStrides[i + 1] * cast<IntegerAttr>(sizes[i + 1]).getInt();
+
+ VectorType inputType = insertStridedSliceOp.getValueToStore().getType();
+ ArrayRef<int64_t> inputShape = inputType.getShape();
+
+ VectorType outputType = insertStridedSliceOp.getType();
+ ArrayRef<int64_t> outputShape = outputType.getShape();
+ int64_t nOutputElements = outputType.getNumElements();
+
+ FailureOr<SmallVector<int64_t>> offsets =
+ intsFromArrayAttr(insertStridedSliceOp.getOffsets());
+ if (failed(offsets)) {
+ return rewriter.notifyMatchFailure(insertStridedSliceOp,
+ "failed to get integer offsets");
}
- // Iterate over all extracted slices from 0 to nExtractedSlices - 1
- // and compute the multi-dimensional index and the corresponding linearized
- // index within the source vector.
- for (int64_t i = 0; i < nExtractedSlices; ++i) {
- int64_t index = i;
- // Compute the corresponding multi-dimensional index.
- llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0);
- for (int64_t j = 0; j < kD; ++j) {
- multiDimIndex[j] = (index / extractedStrides[j]);
- index -= multiDimIndex[j] * extractedStrides[j];
- }
- // Compute the corresponding linearized index in the source vector
- // i.e. shift the multiDimIndex by the offsets.
- int64_t linearizedIndex = 0;
- for (int64_t j = 0; j < kD; ++j) {
- linearizedIndex +=
- (cast<IntegerAttr>(offsets[j]).getInt() + multiDimIndex[j]) *
- sourceStrides[j];
- }
- // Fill the indices array form linearizedIndex to linearizedIndex +
- // extractGranularitySize.
- for (int64_t j = 0; j < extractGranularitySize; ++j) {
- indices[i * extractGranularitySize + j] = linearizedIndex + j;
- }
+ SmallVector<int64_t> sliceIndices = getFlattenedStridedSliceIndices(
+ inputShape, outputShape, offsets.value());
+
+ SmallVector<int64_t> indices(nOutputElements, 0);
----------------
newling wrote:
Right, because it's not like std::vector. Forgot that, thanks!
https://github.com/llvm/llvm-project/pull/138725
More information about the Mlir-commits
mailing list