[Mlir-commits] [mlir] [MLIR][XeGPU] Add unroll patterns for XeGPU (1/N) (PR #137010)

Frank Schlimbach llvmlistbot at llvm.org
Wed May 7 08:23:39 PDT 2025


================
@@ -0,0 +1,466 @@
+//===- XeGPUUnroll.cpp - patterns to do unrolling ---------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains patterns for unrolling XeGPU operations. It follows a
+// similar concept and design as vector unroll patterns, serving as a complement
+// to them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
+
+#include "mlir/Dialect/Utils/IndexingUtils.h"
+#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
+#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include <numeric>
+
+namespace mlir {
+namespace xegpu {
+#define GEN_PASS_DEF_XEGPUUNROLL
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
+} // namespace xegpu
+} // namespace mlir
+
+#define DEBUG_TYPE "xegpu-unroll"
+#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
+#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
+
+using namespace mlir;
+
+namespace {
+
+template <typename SourceOp>
+struct UnrollPattern : public OpRewritePattern<SourceOp> {
+  UnrollPattern(MLIRContext *context, const xegpu::UnrollOptions &options,
+                PatternBenefit benefit = 1)
+      : OpRewritePattern<SourceOp>(context, benefit), options(options) {}
+
+protected:
+  /// Return the target shape for the given `op`. Return std::nullopt if the
+  /// op shouldn't be or cannot be unrolled.
+  std::optional<SmallVector<int64_t>> getTargetShape(Operation *op) const {
+    LDBG("");
+    LDBG("Get unroll shape for: " << *op);
+
+    if (options.filterConstraint && failed(options.filterConstraint(op))) {
+      LDBG("--no filter constraint -> BAIL");
+      return std::nullopt;
+    }
+
+    assert(options.nativeShape &&
+           "expects the native shape for native shape call back function.");
+    auto nativeShape = options.nativeShape(op);
+    return nativeShape;
+  }
+
+  // std::optional<SmallVector<int64_t>>
+  // computeGrids(llvm::ArrayRef<int64_t> shape,
+  //              llvm::ArrayRef<int64_t> subShape) const {
+  //   // if the shape == subshape, we don't need to unroll.
+  //   if (shape == subShape) {
+  //     LDBG("shape == subshape, no unroll");
+  //     return std::nullopt;
+  //   }
+  //   return computeShapeRatio(shape, subShape);
+  // }
+
+  // copy the layout attribte and drops the inst_data field.
+  xegpu::LayoutAttr getLaneLevelAttrsOnly(Attribute attr) const {
+    auto layout = dyn_cast_if_present<xegpu::LayoutAttr>(attr);
+    if (!layout || layout.getLaneLayout() == nullptr)
+      return xegpu::LayoutAttr();
+    return layout.dropInstData();
+  };
+
+  SmallVector<Type> getUnrolledTypes(ShapedType type,
+                                     ArrayRef<int64_t> blockSize) const {
+    auto elemTy = type.getElementType();
+    Type newTy;
+    // TensorDescType needs to drop the inst_data field in the layout attribute
+    if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(type)) {
+      auto ctx = tdescTy.getContext();
+      auto encoding = tdescTy.getEncoding();
+      auto layout = tdescTy.getLayout();
+      newTy = xegpu::TensorDescType::get(ctx, blockSize, elemTy, encoding,
+                                         getLaneLevelAttrsOnly(layout));
+    } else {
+      newTy = type.clone(blockSize, elemTy);
+    }
+
+    auto ratio = computeShapeRatio(type.getShape(), blockSize);
+    assert(ratio && "Expecting the ratio to be valid.");
+    return llvm::SmallVector<Type>(computeProduct(*ratio), newTy);
+  }
+
+  /// emulate the the unpack behavior using insert_strided_slice for VectorType
+  /// values and unrealized_conversion_cast for TileType values.
+  Value unpack(ValueRange srcs, Type destTy, llvm::ArrayRef<int64_t> blockSize,
+               Location loc, PatternRewriter &rewriter) const {
+    if (auto vecTy = dyn_cast<VectorType>(destTy)) {
+      assert(vecTy.getRank() == (int64_t)blockSize.size() &&
+             "Expecting blockSize size to match the rank of destTy.");
+      auto shape = vecTy.getShape();
+      auto zeroAttr = rewriter.getZeroAttr(vecTy.getElementType());
+
+      Value result = rewriter.create<arith::ConstantOp>(
+          loc, vecTy, DenseElementsAttr::get(vecTy, zeroAttr));
+      for (auto [src, offsets] :
+           llvm::zip_equal(srcs, StaticTileOffsetRange(shape, blockSize))) {
+        SmallVector<int64_t> staticStrides(offsets.size(), 1);
+        result = rewriter.create<vector::InsertStridedSliceOp>(
+            loc, src, result, offsets, staticStrides);
+      }
+      return result;
+    }
+
+    if (isa<xegpu::TensorDescType>(destTy)) {
+      auto attr = NamedAttribute(rewriter.getStringAttr(unpackAttrName),
+                                 rewriter.getUnitAttr());
+      auto blkAttr = NamedAttribute(rewriter.getStringAttr(blockAttrName),
+                                    rewriter.getDenseI64ArrayAttr(blockSize));
+      auto castOp = rewriter.create<UnrealizedConversionCastOp>(
+          loc, destTy, srcs, llvm::ArrayRef<NamedAttribute>({attr, blkAttr}));
+      return castOp.getResult(0);
+    }
+
+    llvm_unreachable("Unexpected destTy.");
+    return Value();
+  }
+
+  /// emulate the the pack behavior using extract_strided_slice for VectorType
+  /// values and unrealized_conversion_cast for TensorDescType values.
+  llvm::SmallVector<Value> pack(Value src, TypeRange destTypes,
+                                llvm::ArrayRef<int64_t> blockSize, Location loc,
+                                PatternRewriter &rewriter) const {
+    if (auto vecTy = dyn_cast<VectorType>(src.getType())) {
+      assert(vecTy.getRank() == (int64_t)blockSize.size() &&
----------------
fschlimb wrote:

LLVM coding standard wants c++ casts: https://llvm.org/docs/CodingStandards.html#prefer-c-style-casts

https://github.com/llvm/llvm-project/pull/137010


More information about the Mlir-commits mailing list