[Mlir-commits] [mlir] [MLIR][XeGPU] Add unroll patterns for XeGPU (1/N) (PR #137010)
Frank Schlimbach
llvmlistbot at llvm.org
Wed May 7 08:23:39 PDT 2025
================
@@ -0,0 +1,466 @@
+//===- XeGPUUnroll.cpp - patterns to do unrolling ---------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains patterns for unrolling XeGPU operations. It follows a
+// similar concept and design as vector unroll patterns, serving as a complement
+// to them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
+
+#include "mlir/Dialect/Utils/IndexingUtils.h"
+#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
+#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include <numeric>
+
+namespace mlir {
+namespace xegpu {
+#define GEN_PASS_DEF_XEGPUUNROLL
+#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
+} // namespace xegpu
+} // namespace mlir
+
+#define DEBUG_TYPE "xegpu-unroll"
+#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
+#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
+
+using namespace mlir;
+
+namespace {
+
+template <typename SourceOp>
+struct UnrollPattern : public OpRewritePattern<SourceOp> {
+ UnrollPattern(MLIRContext *context, const xegpu::UnrollOptions &options,
+ PatternBenefit benefit = 1)
+ : OpRewritePattern<SourceOp>(context, benefit), options(options) {}
+
+protected:
+ /// Return the target shape for the given `op`. Return std::nullopt if the
+ /// op shouldn't be or cannot be unrolled.
+ std::optional<SmallVector<int64_t>> getTargetShape(Operation *op) const {
+ LDBG("");
+ LDBG("Get unroll shape for: " << *op);
+
+ if (options.filterConstraint && failed(options.filterConstraint(op))) {
+ LDBG("--no filter constraint -> BAIL");
+ return std::nullopt;
+ }
+
+ assert(options.nativeShape &&
+ "expects the native shape for native shape call back function.");
+ auto nativeShape = options.nativeShape(op);
+ return nativeShape;
+ }
+
+ // std::optional<SmallVector<int64_t>>
+ // computeGrids(llvm::ArrayRef<int64_t> shape,
+ // llvm::ArrayRef<int64_t> subShape) const {
+ // // if the shape == subshape, we don't need to unroll.
+ // if (shape == subShape) {
+ // LDBG("shape == subshape, no unroll");
+ // return std::nullopt;
+ // }
+ // return computeShapeRatio(shape, subShape);
+ // }
+
+ // copy the layout attribte and drops the inst_data field.
+ xegpu::LayoutAttr getLaneLevelAttrsOnly(Attribute attr) const {
+ auto layout = dyn_cast_if_present<xegpu::LayoutAttr>(attr);
+ if (!layout || layout.getLaneLayout() == nullptr)
+ return xegpu::LayoutAttr();
+ return layout.dropInstData();
+ };
+
+ SmallVector<Type> getUnrolledTypes(ShapedType type,
+ ArrayRef<int64_t> blockSize) const {
+ auto elemTy = type.getElementType();
+ Type newTy;
+ // TensorDescType needs to drop the inst_data field in the layout attribute
+ if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(type)) {
+ auto ctx = tdescTy.getContext();
+ auto encoding = tdescTy.getEncoding();
+ auto layout = tdescTy.getLayout();
+ newTy = xegpu::TensorDescType::get(ctx, blockSize, elemTy, encoding,
+ getLaneLevelAttrsOnly(layout));
+ } else {
+ newTy = type.clone(blockSize, elemTy);
+ }
+
+ auto ratio = computeShapeRatio(type.getShape(), blockSize);
+ assert(ratio && "Expecting the ratio to be valid.");
+ return llvm::SmallVector<Type>(computeProduct(*ratio), newTy);
+ }
+
+ /// emulate the the unpack behavior using insert_strided_slice for VectorType
+ /// values and unrealized_conversion_cast for TileType values.
+ Value unpack(ValueRange srcs, Type destTy, llvm::ArrayRef<int64_t> blockSize,
+ Location loc, PatternRewriter &rewriter) const {
+ if (auto vecTy = dyn_cast<VectorType>(destTy)) {
+ assert(vecTy.getRank() == (int64_t)blockSize.size() &&
+ "Expecting blockSize size to match the rank of destTy.");
+ auto shape = vecTy.getShape();
+ auto zeroAttr = rewriter.getZeroAttr(vecTy.getElementType());
+
+ Value result = rewriter.create<arith::ConstantOp>(
+ loc, vecTy, DenseElementsAttr::get(vecTy, zeroAttr));
+ for (auto [src, offsets] :
+ llvm::zip_equal(srcs, StaticTileOffsetRange(shape, blockSize))) {
+ SmallVector<int64_t> staticStrides(offsets.size(), 1);
+ result = rewriter.create<vector::InsertStridedSliceOp>(
+ loc, src, result, offsets, staticStrides);
+ }
+ return result;
+ }
+
+ if (isa<xegpu::TensorDescType>(destTy)) {
+ auto attr = NamedAttribute(rewriter.getStringAttr(unpackAttrName),
+ rewriter.getUnitAttr());
+ auto blkAttr = NamedAttribute(rewriter.getStringAttr(blockAttrName),
+ rewriter.getDenseI64ArrayAttr(blockSize));
+ auto castOp = rewriter.create<UnrealizedConversionCastOp>(
+ loc, destTy, srcs, llvm::ArrayRef<NamedAttribute>({attr, blkAttr}));
+ return castOp.getResult(0);
+ }
+
+ llvm_unreachable("Unexpected destTy.");
+ return Value();
+ }
+
+ /// emulate the the pack behavior using extract_strided_slice for VectorType
+ /// values and unrealized_conversion_cast for TensorDescType values.
+ llvm::SmallVector<Value> pack(Value src, TypeRange destTypes,
+ llvm::ArrayRef<int64_t> blockSize, Location loc,
+ PatternRewriter &rewriter) const {
+ if (auto vecTy = dyn_cast<VectorType>(src.getType())) {
+ assert(vecTy.getRank() == (int64_t)blockSize.size() &&
----------------
fschlimb wrote:
LLVM coding standard wants c++ casts: https://llvm.org/docs/CodingStandards.html#prefer-c-style-casts
https://github.com/llvm/llvm-project/pull/137010
More information about the Mlir-commits
mailing list