[Mlir-commits] [mlir] [mlir][linalg] Update vectorization tests for tensor.{pad|insert_slice} (PR #138267)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Fri May 2 06:06:41 PDT 2025
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-linalg
Author: Andrzej WarzyĆski (banach-space)
<details>
<summary>Changes</summary>
Adds `-canonicalization -cse` to the vectorization tests for:
* `tensor.pad` + `tensor.insert_slice`.
This significantly simplies the expected output to match and hence
improves maintainability of these tests. For for context/discussion:
* https://github.com/llvm/llvm-project/issues/138265
Other Ops/tests will be refactor in follow-up patches.
---
Patch is 30.76 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/138267.diff
3 Files Affected:
- (modified) mlir/test/Dialect/Linalg/vectorization.mlir (-277)
- (added) mlir/test/Dialect/Linalg/vectorization/insert-slice.mlir (+150)
- (added) mlir/test/Dialect/Linalg/vectorization/pad.mlir (+119)
``````````diff
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 299be1296aa66..a970f927e32f5 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -582,132 +582,6 @@ module attributes {transform.with_named_sequence} {
// -----
-// CHECK-LABEL: func @test_masked_vectorize_pad
-func.func @test_masked_vectorize_pad(
- %0 : tensor<?x?xf32>, %h0 : index, %h1 : index)
- -> tensor<2x4xf32>
-{
- // CHECK-DAG: %[[c42:.*]] = arith.constant 4.243000e+01 : f32
- // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
- // CHECK-DAG: %[[c0_0:.*]] = arith.constant 0 : index
- // CHECK: %[[d0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK: %[[d1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<2x4xi1>
- // CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
- // CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0_0]], %[[c0_0]]], %[[c42]]
- // CHECK-SAME: {in_bounds = [true, true]} : tensor<?x?xf32>, vector<2x4xf32>
- // CHECK-SAME: } : vector<2x4xi1> -> vector<2x4xf32>
- // CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
- // CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<2x4xf32>
- // CHECK: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_1]], %[[c0_1]]]
- // CHECK-SAME: {in_bounds = [true, true]} : vector<2x4xf32>, tensor<2x4xf32>
- %cst = arith.constant 42.43 : f32
- %c0 = arith.constant 0 : index
- %1 = tensor.pad %0 low[0, %c0] high[%h0, %h1] {
- ^bb0(%hh1: index, %hh2: index):
- tensor.yield %cst : f32
- } : tensor<?x?xf32> to tensor<2x4xf32>
- return %1: tensor<2x4xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1
- : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// CHECK: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 + s1)>
-// CHECK: func @test_masked_vectorize_dynamic_pad
-func.func @test_masked_vectorize_dynamic_pad(
- %0 : tensor<?x?xf32>, %h0 : index, %h1 : index)
- -> tensor<?x?xf32>
-{
- // CHECK-DAG: %[[c42:.*]] = arith.constant 4.243000e+01 : f32
- // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
- // CHECK-DAG: %[[res_d0:.+]] = affine.apply #[[MAP]]()
- // CHECK-DAG: %[[res_d1:.+]] = affine.apply #[[MAP]]()
- // CHECK: %[[c0_2:.*]] = arith.constant 0 : index
- // CHECK: %[[d0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK: %[[d1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<2x4xi1>
- // CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
- // CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0_2]], %[[c0_2]]], %[[c42]]
- // CHECK-SAME: {in_bounds = [true, true]} : tensor<?x?xf32>, vector<2x4xf32>
- // CHECK-SAME: } : vector<2x4xi1> -> vector<2x4xf32>
- // CHECK-DAG: %[[empty:.*]] = tensor.empty(%[[res_d0]], %[[res_d1]]) : tensor<?x?xf32>
- // CHECK-DAG: %[[c0_3:.*]] = arith.constant 0 : index
- // CHECK: %[[mask_2:.*]] = vector.create_mask %[[res_d0]], %[[res_d1]] : vector<2x4xi1>
- // CHECK: %[[masked_write:.*]] = vector.mask %[[mask_2]] {
- // CHECK-SAME: vector.transfer_write %[[masked_read]], %[[empty]][%[[c0_3]], %[[c0_3]]]
- // CHECK-SAME: {in_bounds = [true, true]} : vector<2x4xf32>, tensor<?x?xf32>
- // CHECK: return %[[masked_write]] : tensor<?x?xf32>
- %cst = arith.constant 42.43 : f32
- %c0 = arith.constant 0 : index
- %1 = tensor.pad %0 low[0, %c0] high[%h0, %h1] {
- ^bb0(%hh1: index, %hh2: index):
- tensor.yield %cst : f32
- } : tensor<?x?xf32> to tensor<?x?xf32>
- return %1: tensor<?x?xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1
- : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [2, 4] : !transform.any_op
- transform.yield
- }
-}
-
-// -----
-// This case is supported because low padding `%l0` is applied on
-// a unit dimension which is supported, non unit result dimension low
-// padding is currently unsupported.
-// CHECK-LABEL: func @test_masked_vectorize_non_zero_low_pad_unit_res_dim
-func.func @test_masked_vectorize_non_zero_low_pad_unit_res_dim(
- %0 : tensor<?x?xf32>, %h0 : index, %h1 : index, %l0 : index)
- -> tensor<1x4xf32>
-{
- // CHECK-DAG: %[[C42:.*]] = arith.constant 4.243000e+01 : f32
- // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
- // CHECK: %[[C0_1:.*]] = arith.constant 0 : index
- // CHECK-DAG: %[[D0:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK-DAG: %[[D1:.*]] = tensor.dim {{.*}} : tensor<?x?xf32>
- // CHECK: %[[MASK:.*]] = vector.create_mask %[[D0]], %[[D1]] : vector<1x4xi1>
- // CHECK: %[[MASKED_READ:.*]] = vector.mask %[[MASK]] {
- // CHECK-SAME: vector.transfer_read %{{.*}}[%[[C0_1]], %[[C0_1]]], %[[C42]]
- // CHECK-SAME: {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32>
- // CHECK-SAME: } : vector<1x4xi1> -> vector<1x4xf32>
- // CHECK-DAG: %[[EMPTY:.*]] = tensor.empty() : tensor<1x4xf32>
- // CHECK-DAG: %[[C0_2:.*]] = arith.constant 0 : index
- // CHECK: %[[MASKED_WRITE:.*]] = vector.transfer_write %[[MASKED_READ]], %[[EMPTY]][%[[C0_2]], %[[C0_2]]]
- // CHECK-SAME: {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
- // CHECK: return %[[MASKED_WRITE]] : tensor<1x4xf32>
- %cst = arith.constant 42.43 : f32
- %c0 = arith.constant 0 : index
- %1 = tensor.pad %0 low[%l0, %c0] high[%h0, %h1] {
- ^bb0(%hh1: index, %hh2: index):
- tensor.yield %cst : f32
- } : tensor<?x?xf32> to tensor<1x4xf32>
- return %1: tensor<1x4xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1
- : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [1, 4] : !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
// Input identical as the test in vectorization-with-patterns.mlir. Output is
// different - vector sizes are inferred (rather than user-specified) and hence
// masking was used.
@@ -1150,154 +1024,3 @@ func.func @test_vectorize_unpack_no_vector_sizes_permute(%source: tensor<4x7x4xf
transform.yield
}
}
-
-// -----
-
-///----------------------------------------------------------------------------------------
-/// tensor.insert_slice
-///----------------------------------------------------------------------------------------
-
-func.func private @insert_slice_static_sizes(%source: tensor<?x3x?x1xi32>) -> tensor<5x3xi32> {
- %c2 = arith.constant 2 : index
- %init = tensor.empty() : tensor<5x3xi32>
-
- %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
- %res = tensor.insert_slice %source_slice into %init[0, %c2] [5, 1] [1, 1] : tensor<5x1xi32> into tensor<5x3xi32>
-
- return %res : tensor<5x3xi32>
-}
-
-// CHECK-LABEL: func.func private @insert_slice_static_sizes(
-// CHECK-SAME: %[[SEC:.*]]: tensor<?x3x?x1xi32>) -> tensor<5x3xi32> {
-// CHECK: %[[C_2:.*]] = arith.constant 2 : index
-// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<5x3xi32>
-// CHECK: %[[SRC_SLICE:.*]] = tensor.extract_slice %[[SEC]][0, %[[C_2]], 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
-// CHECK-DAG: %[[PAD:.*]] = arith.constant 0 : i32
-// CHECK-DAG: %[[C_5:.*]] = arith.constant 5 : index
-// CHECK-DAG: %[[C_1:.*]] = arith.constant 1 : index
-// CHECK: %[[MASK:.*]] = vector.create_mask %[[C_5]], %[[C_1]] : vector<8x1xi1>
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SLICE]][%[[C0]], %[[C0]]], %[[PAD]] : tensor<5x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
-// CHECK: %[[C_0:.*]] = arith.constant 0 : index
-// CHECK: %[[RES:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]][%[[C_0]], %[[C_2]]] : vector<8x1xi32>, tensor<5x3xi32> } : vector<8x1xi1> -> tensor<5x3xi32>
-// CHECK: return %[[RES]] : tensor<5x3xi32>
-
- module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [8, 1] : !transform.any_op
- transform.yield
- }
- }
-
-// -----
-
-// One of the _source_ dimensions is dynamic (but _destination_ dimensions are static).
-
-func.func private @insert_slice_dynamic_src_dim(%source: tensor<?x3x?x1xi32>, %size: index) -> tensor<5x3xi32> {
- %c2 = arith.constant 2 : index
- %init = tensor.empty() : tensor<5x3xi32>
-
- %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, %size, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
- %res = tensor.insert_slice %source_slice into %init[0, %c2] [%size, 1] [1, 1] : tensor<?x1xi32> into tensor<5x3xi32>
-
- return %res : tensor<5x3xi32>
-}
-
-// CHECK-LABEL: func.func private @insert_slice_dynamic_src_dim(
-// CHECK-SAME: %[[SRC:.*]]: tensor<?x3x?x1xi32>,
-// CHECK-SAME: %[[SIZE:.*]]: index) -> tensor<5x3xi32> {
-// CHECK: %[[C_2:.*]] = arith.constant 2 : index
-// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<5x3xi32>
-// CHECK: %[[SRC_SLICE:.*]] = tensor.extract_slice %[[SRC]][0, %[[C_2]], 0, 0] [1, 1, %[[SIZE]], 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
-// CHECK-DAG: %[[PAD:.*]] = arith.constant 0 : i32
-// CHECK-DAG: %[[C_1:.*]] = arith.constant 1 : index
-// CHECK: %[[MASK:.*]] = vector.create_mask %[[SIZE]], %[[C_1]] : vector<8x1xi1>
-// CHECK: %[[C_0:.*]] = arith.constant 0 : index
-// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SLICE]][%[[C_0]], %[[C_0]]], %[[PAD]] : tensor<?x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
-// CHECK: %[[C_0_1:.*]] = arith.constant 0 : index
-// CHECK: %[[RES:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]][%[[C_0_1]], %[[C_2]]] : vector<8x1xi32>, tensor<5x3xi32> } : vector<8x1xi1> -> tensor<5x3xi32>
-// CHECK: return %[[RES]] : tensor<5x3xi32>
-
- module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [8, 1] : !transform.any_op
- transform.yield
- }
- }
-
-// -----
-
-// One of the _destination_ dimensions is dynamic (but _source_ dimensions are static).
-
-func.func private @insert_slice_dynamic_dest_dim(%source: tensor<?x3x?x1xi32>, %size: index) -> tensor<?x3xi32> {
- %c2 = arith.constant 2 : index
- %init = tensor.empty(%size) : tensor<?x3xi32>
-
- %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
- %res = tensor.insert_slice %source_slice into %init[0, %c2] [5, 1] [1, 1] : tensor<5x1xi32> into tensor<?x3xi32>
-
- return %res : tensor<?x3xi32>
-}
-
-// CHECK-LABEL: func.func private @insert_slice_dynamic_dest_dim(
-// CHECK-SAME: %[[SRC:.*]]: tensor<?x3x?x1xi32>,
-// CHECK-SAME: %[[SIZE:.*]]: index) -> tensor<?x3xi32> {
-// CHECK: %[[C_2:.*]] = arith.constant 2 : index
-// CHECK: %[[INIT:.*]] = tensor.empty(%[[SIZE]]) : tensor<?x3xi32>
-// CHECK: %[[SRC_SLICE:.*]] = tensor.extract_slice %[[SRC]][0, %[[C_2]], 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
-// CHECK: %[[PAD:.*]] = arith.constant 0 : i32
-// CHECK: %[[C_5:.*]] = arith.constant 5 : index
-// CHECK: %[[C_1:.*]] = arith.constant 1 : index
-// CHECK: %[[MASK:.*]] = vector.create_mask %[[C_5]], %[[C_1]] : vector<8x1xi1>
-// CHECK: %[[C_0:.*]] = arith.constant 0 : index
-// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SLICE]][%[[C_0]], %[[C_0]]], %[[PAD]] : tensor<5x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
-// CHECK: %[[C_0_1:.*]] = arith.constant 0 : index
-// CHECK: %[[WRITE:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]][%[[C_0_1]], %[[C_2]]] : vector<8x1xi32>, tensor<?x3xi32> } : vector<8x1xi1> -> tensor<?x3xi32>
-// CHECK: return %[[WRITE]] : tensor<?x3xi32>
-
- module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [8, 1] : !transform.any_op
- transform.yield
- }
- }
-
-// -----
-
-// At least one _source_ and one _destination_ dimensions are dynamic.
-
-func.func private @insert_slice_dynamic_source_and_dest_dim(%source: tensor<?x3x?x1xi32>, %size: index) -> tensor<?x3xi32> {
- %c2 = arith.constant 2 : index
- %init = tensor.empty(%size) : tensor<?x3xi32>
-
- %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, %size, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
- %res = tensor.insert_slice %source_slice into %init[0, %c2] [%size, 1] [1, 1] : tensor<?x1xi32> into tensor<?x3xi32>
-
- return %res : tensor<?x3xi32>
-}
-
-// CHECK-LABEL: func.func private @insert_slice_dynamic_source_and_dest_dim(
-// CHECK-SAME: %[[SRC:.*]]: tensor<?x3x?x1xi32>,
-// CHECK-SAME: %[[SIZE:.*]]: index) -> tensor<?x3xi32> {
-// CHECK: %[[C_2:.*]] = arith.constant 2 : index
-// CHECK: %[[INIT:.*]] = tensor.empty(%[[SIZE]]) : tensor<?x3xi32>
-// CHECK: %[[SRC_SIZE:.*]] = tensor.extract_slice %[[SRC]][0, %[[C_2]], 0, 0] [1, 1, %[[SIZE]], 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
-// CHECK: %[[PAD:.*]] = arith.constant 0 : i32
-// CHECK: %[[C1:.*]] = arith.constant 1 : index
-// CHECK: %[[MASK:.*]] = vector.create_mask %[[SIZE]], %[[C1]] : vector<8x1xi1>
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SIZE]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<?x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
-// CHECK: %[[C_0_1:.*]] = arith.constant 0 : index
-// CHECK: %[[WRITE:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]]{{\[}}%[[C_0_1]], %[[C_2]]] : vector<8x1xi32>, tensor<?x3xi32> } : vector<8x1xi1> -> tensor<?x3xi32>
-// CHECK: return %[[WRITE]] : tensor<?x3xi32>
-
- module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [8, 1] : !transform.any_op
- transform.yield
- }
- }
diff --git a/mlir/test/Dialect/Linalg/vectorization/insert-slice.mlir b/mlir/test/Dialect/Linalg/vectorization/insert-slice.mlir
new file mode 100644
index 0000000000000..14522cb970ab5
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/vectorization/insert-slice.mlir
@@ -0,0 +1,150 @@
+// RUN: mlir-opt %s -transform-interpreter -split-input-file -cse -canonicalize | FileCheck %s
+
+func.func private @insert_slice_static_sizes(%source: tensor<?x3x?x1xi32>) -> tensor<5x3xi32> {
+ %c2 = arith.constant 2 : index
+ %init = tensor.empty() : tensor<5x3xi32>
+
+ %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
+ %res = tensor.insert_slice %source_slice into %init[0, %c2] [5, 1] [1, 1] : tensor<5x1xi32> into tensor<5x3xi32>
+
+ return %res : tensor<5x3xi32>
+}
+
+// CHECK-LABEL: func.func private @insert_slice_static_sizes(
+// CHECK-SAME: %[[SEC:.*]]: tensor<?x3x?x1xi32>) -> tensor<5x3xi32> {
+// CHECK-DAG: %[[C_2:.*]] = arith.constant 2 : index
+// CHECK-DAG: %[[PAD:.*]] = arith.constant 0 : i32
+// CHECK-DAG: %[[C_0:.*]] = arith.constant 0 : index
+// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<5x3xi32>
+// CHECK: %[[SRC_SLICE:.*]] = tensor.extract_slice %[[SEC]][0, 2, 0, 0] [1, 1, 5, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<5x1xi32>
+// CHECK: %[[MASK:.*]] = vector.constant_mask [5, 1] : vector<8x1xi1>
+// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SLICE]][%[[C_0]], %[[C_0]]], %[[PAD]] {{.*}}: tensor<5x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
+/// The mask is vector.constant_mask [5, 1] rather than e.g.
+/// * vector.constant_mask [5, %c3]
+/// as the trailing dim of the mask is "1" anyway.
+// CHECK: %[[RES:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]][%[[C_0]], %[[C_2]]] {{.*}}: vector<8x1xi32>, tensor<5x3xi32> } : vector<8x1xi1> -> tensor<5x3xi32>
+// CHECK: return %[[RES]] : tensor<5x3xi32>
+
+ module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 vector_sizes [8, 1] : !transform.any_op
+ transform.yield
+ }
+ }
+
+// -----
+
+// One of the _source_ dimensions is dynamic (but _destination_ dimensions are static).
+
+func.func private @insert_slice_dynamic_src_dim(%source: tensor<?x3x?x1xi32>, %size: index) -> tensor<5x3xi32> {
+ %c2 = arith.constant 2 : index
+ %init = tensor.empty() : tensor<5x3xi32>
+
+ %source_slice = tensor.extract_slice %source[0, %c2, 0, 0] [1, 1, %size, 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
+ %res = tensor.insert_slice %source_slice into %init[0, %c2] [%size, 1] [1, 1] : tensor<?x1xi32> into tensor<5x3xi32>
+
+ return %res : tensor<5x3xi32>
+}
+
+// CHECK-LABEL: func.func private @insert_slice_dynamic_src_dim(
+// CHECK-SAME: %[[SRC:.*]]: tensor<?x3x?x1xi32>,
+// CHECK-SAME: %[[SIZE:.*]]: index) -> tensor<5x3xi32> {
+// CHECK-DAG: %[[PAD:.*]] = arith.constant 0 : i32
+// CHECK-DAG: %[[C_1:.*]] = arith.constant 1 : index
+// CHECK-DAG: %[[C_2:.*]] = arith.constant 2 : index
+// CHECK-DAG: %[[C_0:.*]] = arith.constant 0 : index
+// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<5x3xi32>
+// CHECK: %[[SRC_SLICE:.*]] = tensor.extract_slice %[[SRC]][0, 2, 0, 0] [1, 1, %[[SIZE]], 1] [1, 1, 1, 1] : tensor<?x3x?x1xi32> to tensor<?x1xi32>
+// CHECK: %[[MASK:.*]] = vector.create_mask %[[SIZE]], %[[C_1]] : vector<8x1xi1>
+// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC_SLICE]][%[[C_0]], %[[C_0]]], %[[PAD]] {{.*}}: tensor<?x1xi32>, vector<8x1xi32> } : vector<8x1xi1> -> vector<8x1xi32>
+/// The mask is vector.constant_mask [5, 1] rather than e.g.
+/// * vector.constant_mask [5, %c3]
+/// as the trailing dim of the mask is "1" anyway.
+// CHECK: %[[RES:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[INIT]][%[[C_0]], %[[C_2]]] {{.*}}: vector<8x1xi32>, tensor<5x3xi32> } : vector<8x1xi1> -> tensor<5x3xi32>
+// CHECK: return %[[RES]] : tensor<5x3xi32>
+
+ module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op...
[truncated]
``````````
</details>
https://github.com/llvm/llvm-project/pull/138267
More information about the Mlir-commits
mailing list