[Mlir-commits] [mlir] [MLIR][Linalg] Introduce transpose/broadcast semantic to linalg.batch… (PR #130944)

Md Asghar Ahmad Shahid llvmlistbot at llvm.org
Thu May 1 08:59:06 PDT 2025


================
@@ -1484,6 +1484,201 @@ func.func @invalid_C_map_result_dim_batch_matmul(%arg0: memref<?x?x?xf32>, %arg1
 }
 
 
+// -----
+
+func.func @missing_indexing_map_batch_reduce_matmul(%arg0: memref<?x?x?xf32>,
+     %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+     // expected-error @+1 {{Indexing_map attribute must have 3 affine maps}}
+     linalg.batch_reduce_matmul
+         indexing_maps = [affine_map<(batch, m, n, k) -> (batch, m, k)>,
+                          affine_map<(batch, m, n, k) -> (batch, n, k)>]
+         ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>)
+         outs(%arg2: memref<?x?xf32>)
+     return
+}
+
+// -----
+
+func.func @indexing_map_size_one_batch_reduce_matmul(%arg0: memref<?x?x?xf32>,
+     %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+     // expected-error @+1 {{Indexing_map attribute must have 3 affine maps}}
+     linalg.batch_reduce_matmul
+         indexing_maps = [affine_map<(batch, m, n, k) -> (batch, m, k)>]
+         ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>)
+         outs(%arg2: memref<?x?xf32>)
+     return
+
+}
+
+// -----
+
+func.func @missing_indexing_map_batch_reduce_matmul(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+  // expected-error @+1 {{expected attribute value}}
+  linalg.batch_reduce_matmul indexing_maps = [
+                       ,
+                       affine_map<(batch, m, n, k) -> (batch, k, n)>,
+                       affine_map<(batch, m, n, k) -> (m, n)>]
+      ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>)
+      outs(%arg2 :memref<?x?xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_dim_expr_batch_reduce_matmul_a(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+  // expected-error @+1 {{Unexpected result dim expression (outside the set of default result dims)}}
+  linalg.batch_reduce_matmul
+      indexing_maps = [affine_map<(batch, m, n, k) -> (batch, n, k)>,
+                       affine_map<(batch, m, n, k) -> (batch, k, n)>,
+                       affine_map<(batch, m, n, k) -> (m, n)>]
+      ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>)
+      outs(%arg2 :memref<?x?xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_dim_expr_batch_reduce_matmul_b(%arg0: memref<?x?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+  // expected-error @+1 {{Unexpected result dim expression (outside the set of default result dims)}}
+  linalg.batch_reduce_matmul
+      indexing_maps = [affine_map<(batch, m, n, k) -> (batch, m, k)>,
+                       affine_map<(batch, m, n, k) -> (batch, k, m)>,
+                       affine_map<(batch, m, n, k) -> (m, n)>]
+      ins(%arg0, %arg1 : memref<?x?x?xf32>, memref<?x?x?xf32>)
+      outs(%arg2 :memref<?x?xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_bcast_batch_reduce_matmul_a(%arg0: memref<?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+  // expected-error @+1 {{'linalg.batch_reduce_matmul' op Invalid broadcast requested}}
+  linalg.batch_reduce_matmul
+      indexing_maps = [affine_map<(batch, m, n, k) -> (batch)>,
+                       affine_map<(batch, m, n, k) -> (batch, k, n)>,
+                       affine_map<(batch, m, n, k) -> (m, n)>]
+      ins(%arg0, %arg1 : memref<?xf32>, memref<?x?x?xf32>)
+      outs(%arg2: memref<?x?xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_multi_dim_bcast_expr_batch_reduce_matmul_a(%arg0: memref<?x?xf32>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?xf32>) {
+  // expected-error @+1 {{'linalg.batch_reduce_matmul' op Invalid broadcast requested}}
+  linalg.batch_reduce_matmul
+      indexing_maps = [affine_map<(batch, m, n, k) -> (batch, k)>,
----------------
shahidact wrote:

Apologies for not being clear enough. Matrix multiplication is defined as the sum of products along a shared dimension. The shared dimension is K which must be same for both A and B matrices while M and N can differ. For example, if M not equal to N and we broadcast M to K for A matrix and N to K for B matrix, K no longer remains common/shared, consequently violating the `matmul` definition.

https://github.com/llvm/llvm-project/pull/130944


More information about the Mlir-commits mailing list