[Mlir-commits] [mlir] Adding Vector to AMDGPU conversion lowering (PR #131803)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Mar 18 06:46:18 PDT 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir-gpu

Author: Zhuoran Yin (jerryyin)

<details>
<summary>Changes</summary>

This PR adds the Vector -> AMDGPU conversion lowering, including a single lowering pattern. The single lowering pattern creates a transfer read op lowering. A vector trasfer read op will be lowered to a combination of `vector.load`, `arith.select` and `vector.broadcast` if:
 - The transfer op is masked.
 - The memref is in buffer address space.
 - Other conditions introduced from `TransferReadToVectorLoadLowering`

The motivation of this PR is due to the lack of support of masked load from amdgpu backend. `llvm.intr.masked.load` lower to a series of conditional scalar loads refer to (`scalarize-masked-mem-intrin` pass). This PR will allow masked transfer_read to be lowered towards buffer load with bounds check, allowing a more optimized global load accessing pattern compared with existing implementation of `llvm.intr.masked.load` on vectors. 

---
Full diff: https://github.com/llvm/llvm-project/pull/131803.diff


7 Files Affected:

- (modified) mlir/include/mlir/Conversion/Passes.h (+1) 
- (modified) mlir/include/mlir/Conversion/Passes.td (+10) 
- (added) mlir/include/mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h (+24) 
- (modified) mlir/lib/Conversion/CMakeLists.txt (+1) 
- (added) mlir/lib/Conversion/VectorToAMDGPU/CMakeLists.txt (+18) 
- (added) mlir/lib/Conversion/VectorToAMDGPU/VectorToAMDGPU.cpp (+147) 
- (added) mlir/test/Conversion/VectorToAMDGPU/vector-transfer-read-to-vector-load.mlir (+68) 


``````````diff
diff --git a/mlir/include/mlir/Conversion/Passes.h b/mlir/include/mlir/Conversion/Passes.h
index ccd862f67c068..ed5e8de8787f7 100644
--- a/mlir/include/mlir/Conversion/Passes.h
+++ b/mlir/include/mlir/Conversion/Passes.h
@@ -73,6 +73,7 @@
 #include "mlir/Conversion/TosaToTensor/TosaToTensor.h"
 #include "mlir/Conversion/UBToLLVM/UBToLLVM.h"
 #include "mlir/Conversion/UBToSPIRV/UBToSPIRV.h"
+#include "mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h"
 #include "mlir/Conversion/VectorToArmSME/VectorToArmSME.h"
 #include "mlir/Conversion/VectorToGPU/VectorToGPU.h"
 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVMPass.h"
diff --git a/mlir/include/mlir/Conversion/Passes.td b/mlir/include/mlir/Conversion/Passes.td
index bbba495e613b2..1845d0235183e 100644
--- a/mlir/include/mlir/Conversion/Passes.td
+++ b/mlir/include/mlir/Conversion/Passes.td
@@ -1333,6 +1333,16 @@ def ConvertVectorToArmSMEPass : Pass<"convert-vector-to-arm-sme"> {
   let dependentDialects = ["arm_sme::ArmSMEDialect", "arm_sve::ArmSVEDialect"];
 }
 
+//===----------------------------------------------------------------------===//
+// VectorToAMDGPU
+//===----------------------------------------------------------------------===//
+
+def ConvertVectorToAMDGPUPass : Pass<"convert-vector-to-amdgpu"> {
+  let summary = "Lower the operations from the vector dialect into the AMDGPU "
+                "dialect";
+  let dependentDialects = ["amdgpu::AMDGPUDialect", "vector::VectorDialect"];
+} 
+
 //===----------------------------------------------------------------------===//
 // ArmSMEToSCF
 //===----------------------------------------------------------------------===//
diff --git a/mlir/include/mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h b/mlir/include/mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h
new file mode 100644
index 0000000000000..be96061a23b08
--- /dev/null
+++ b/mlir/include/mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h
@@ -0,0 +1,24 @@
+//===- VectorToAMDGPU.h - Vector to AMDGPU dialect conversion ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_CONVERSION_VECTORTOAMDGPU_VECTORTOAMDGPU_H
+#define MLIR_CONVERSION_VECTORTOAMDGPU_VECTORTOAMDGPU_H
+
+#include "mlir/IR/PatternMatch.h"
+
+namespace mlir {
+class RewritePatternSet;
+class Pass;
+
+#define GEN_PASS_DECL_CONVERTVECTORTOAMDGPUPASS
+#include "mlir/Conversion/Passes.h.inc"
+
+void populateVectorToAMDGPUConversionPatterns(RewritePatternSet &patterns);
+} // namespace mlir
+
+#endif // MLIR_CONVERSION_VECTORTOAMDGPU_VECTORTOAMDGPU_H
diff --git a/mlir/lib/Conversion/CMakeLists.txt b/mlir/lib/Conversion/CMakeLists.txt
index b6c21440c571c..1e4cbd2be4c96 100644
--- a/mlir/lib/Conversion/CMakeLists.txt
+++ b/mlir/lib/Conversion/CMakeLists.txt
@@ -66,6 +66,7 @@ add_subdirectory(TosaToSCF)
 add_subdirectory(TosaToTensor)
 add_subdirectory(UBToLLVM)
 add_subdirectory(UBToSPIRV)
+add_subdirectory(VectorToAMDGPU)
 add_subdirectory(VectorToArmSME)
 add_subdirectory(VectorToGPU)
 add_subdirectory(VectorToLLVM)
diff --git a/mlir/lib/Conversion/VectorToAMDGPU/CMakeLists.txt b/mlir/lib/Conversion/VectorToAMDGPU/CMakeLists.txt
new file mode 100644
index 0000000000000..2ad46c26d0a57
--- /dev/null
+++ b/mlir/lib/Conversion/VectorToAMDGPU/CMakeLists.txt
@@ -0,0 +1,18 @@
+add_mlir_conversion_library(MLIRVectorToAMDGPU
+  VectorToAMDGPU.cpp
+
+  ADDITIONAL_HEADER_DIRS
+  ${MLIR_MAIN_INCLUDE_DIR}/mlir/Conversion/VectorToAMDGPU
+
+  DEPENDS
+  MLIRConversionPassIncGen
+
+  LINK_COMPONENTS
+  Core
+
+  LINK_LIBS PUBLIC
+  MLIRAMDGPUDialect
+  MLIRVectorDialect
+  MLIRPass
+  MLIRTransforms
+  )
diff --git a/mlir/lib/Conversion/VectorToAMDGPU/VectorToAMDGPU.cpp b/mlir/lib/Conversion/VectorToAMDGPU/VectorToAMDGPU.cpp
new file mode 100644
index 0000000000000..248b84a7fdc98
--- /dev/null
+++ b/mlir/lib/Conversion/VectorToAMDGPU/VectorToAMDGPU.cpp
@@ -0,0 +1,147 @@
+//===- VectorToAMDGPU.cpp - Vector to AMDGPU dialect conversion ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Conversion/VectorToAMDGPU/VectorToAMDGPU.h"
+
+#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/TypeUtilities.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Support/LogicalResult.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+namespace mlir {
+#define GEN_PASS_DEF_CONVERTVECTORTOAMDGPUPASS
+#include "mlir/Conversion/Passes.h.inc"
+} // namespace mlir
+
+using namespace mlir;
+
+/// This pattern supports lowering of:
+/// `vector.transfer_read` to a combination of `vector.load`, `arith.select` and
+/// `vector.broadcast` if all of the following hold:
+/// - The transfer op is masked.
+/// - The memref is in buffer address space.
+/// - Stride of most minor memref dimension must be 1.
+/// - Out-of-bounds masking is not required.
+/// - If the memref's element type is a vector type then it coincides with the
+///   result type.
+/// - The permutation map doesn't perform permutation (broadcasting is allowed).
+/// Note: those conditions mostly come from TransferReadToVectorLoadLowering
+/// pass.
+static LogicalResult
+transferPreconditions(PatternRewriter &rewriter,
+                      VectorTransferOpInterface xferOp,
+                      SmallVector<unsigned> &broadcastedDims,
+                      VectorType &unbroadcastedVectorType) {
+  if (!xferOp.getMask())
+    return rewriter.notifyMatchFailure(xferOp, "Only support masked transfer");
+
+  // Permutations are handled by VectorToSCF or
+  // populateVectorTransferPermutationMapLoweringPatterns.
+  // We let the 0-d corner case pass-through as it is supported.
+  if (!xferOp.getPermutationMap().isMinorIdentityWithBroadcasting(
+          &broadcastedDims))
+    return rewriter.notifyMatchFailure(xferOp, "not minor identity + bcast");
+
+  auto memRefType = dyn_cast<MemRefType>(xferOp.getShapedType());
+  if (!memRefType)
+    return rewriter.notifyMatchFailure(xferOp, "not a memref source");
+
+  Attribute addrSpace = memRefType.getMemorySpace();
+  if (!addrSpace ||
+      llvm::dyn_cast<amdgpu::AddressSpaceAttr>(addrSpace).getValue() !=
+          amdgpu::AddressSpace::FatRawBuffer)
+    return rewriter.notifyMatchFailure(xferOp, "not in buffer address space");
+
+  // Non-unit strides are handled by VectorToSCF.
+  if (!memRefType.isLastDimUnitStride())
+    return rewriter.notifyMatchFailure(xferOp, "!= 1 stride needs VectorToSCF");
+
+  // If there is broadcasting involved then we first load the unbroadcasted
+  // vector, and then broadcast it with `vector.broadcast`.
+  ArrayRef<int64_t> vectorShape = xferOp.getVectorType().getShape();
+  SmallVector<int64_t> unbroadcastedVectorShape(vectorShape);
+  for (unsigned i : broadcastedDims)
+    unbroadcastedVectorShape[i] = 1;
+  unbroadcastedVectorType = xferOp.getVectorType().cloneWith(
+      unbroadcastedVectorShape, xferOp.getVectorType().getElementType());
+
+  // `vector.load` supports vector types as memref's elements only when the
+  // resulting vector type is the same as the element type.
+  auto memrefElTy = memRefType.getElementType();
+  if (isa<VectorType>(memrefElTy) && memrefElTy != unbroadcastedVectorType)
+    return rewriter.notifyMatchFailure(xferOp, "incompatible element type");
+
+  // Otherwise, element types of the memref and the vector must match.
+  if (!isa<VectorType>(memrefElTy) &&
+      memrefElTy != xferOp.getVectorType().getElementType())
+    return rewriter.notifyMatchFailure(xferOp, "non-matching element type");
+
+  // Out-of-bounds dims are handled by MaterializeTransferMask.
+  if (xferOp.hasOutOfBoundsDim())
+    return rewriter.notifyMatchFailure(xferOp, "out-of-bounds needs mask");
+
+  if (xferOp.getVectorType().getRank() != 1)
+    // vector.maskedload operates on 1-D vectors.
+    return rewriter.notifyMatchFailure(
+        xferOp, "vector type is not rank 1, can't create masked load, needs "
+                "VectorToSCF");
+
+  return success();
+}
+
+struct TransferReadLowering : public OpRewritePattern<vector::TransferReadOp> {
+  using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
+
+  LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
+                                PatternRewriter &rewriter) const override {
+
+    SmallVector<unsigned> broadcastedDims;
+    VectorType unbroadcastedVectorType;
+    if (failed(transferPreconditions(rewriter, readOp, broadcastedDims,
+                                     unbroadcastedVectorType))) {
+      return failure();
+    }
+
+    Value fill = rewriter.create<vector::SplatOp>(
+        readOp.getLoc(), unbroadcastedVectorType, readOp.getPadding());
+    Value load = rewriter.create<vector::LoadOp>(
+        readOp.getLoc(), unbroadcastedVectorType, readOp.getSource(),
+        readOp.getIndices());
+    Value res = rewriter.create<arith::SelectOp>(
+        readOp.getLoc(), unbroadcastedVectorType, readOp.getMask(), load, fill);
+
+    // Insert a broadcasting op if required.
+    if (!broadcastedDims.empty()) {
+      res = rewriter.create<vector::BroadcastOp>(readOp.getLoc(),
+                                                 readOp.getVectorType(), res);
+    }
+
+    rewriter.replaceOp(readOp, res);
+
+    return success();
+  }
+};
+
+void mlir::populateVectorToAMDGPUConversionPatterns(
+    RewritePatternSet &patterns) {
+  patterns.add<TransferReadLowering>(patterns.getContext());
+}
+
+struct ConvertVectorToAMDGPUPass
+    : public impl::ConvertVectorToAMDGPUPassBase<ConvertVectorToAMDGPUPass> {
+  void runOnOperation() override {
+    RewritePatternSet patterns(&getContext());
+    populateVectorToAMDGPUConversionPatterns(patterns);
+    if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
+      return signalPassFailure();
+  }
+};
diff --git a/mlir/test/Conversion/VectorToAMDGPU/vector-transfer-read-to-vector-load.mlir b/mlir/test/Conversion/VectorToAMDGPU/vector-transfer-read-to-vector-load.mlir
new file mode 100644
index 0000000000000..30d9814cc0621
--- /dev/null
+++ b/mlir/test/Conversion/VectorToAMDGPU/vector-transfer-read-to-vector-load.mlir
@@ -0,0 +1,68 @@
+// RUN: mlir-opt %s -convert-vector-to-amdgpu --split-input-file | FileCheck %s
+
+// CHECK-LABEL: func @transfer_to_maskedload_fatrawbuffer(
+// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
+// CHECK-SAME: %[[ARG1:.*]]: index
+// CHECK-SAME: %[[ARG2:.*]]: vector<4xi1>
+func.func @transfer_to_maskedload_fatrawbuffer(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<4xi1>) -> vector<4xf32> {
+  %cf0 = arith.constant 0.0 : f32
+  %res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
+  return %res : vector<4xf32>
+}
+// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00>
+// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
+// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[CST]]
+// CHECK: return %[[SELECT]] : vector<4xf32>
+
+// -----
+
+// CHECK-LABEL: func @transfer_to_maskedload_regular(
+// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32>
+// CHECK-SAME: %[[ARG1:.*]]: index
+// CHECK-SAME: %[[ARG2:.*]]: vector<4xi1>
+func.func @transfer_to_maskedload_regular(%mem : memref<8x8xf32>, %idx : index, %mask : vector<4xi1>) -> vector<4xf32> {
+  %cf0 = arith.constant 0.0 : f32
+  %res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
+  return %res : vector<4xf32>
+}
+// CHECK: %[[CST:.*]] = arith.constant 0.0
+// CHECK: %[[RES:.*]] = vector.transfer_read %arg0[%arg1, %arg1], %[[CST]], %arg2 {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
+// CHECK: return %[[RES]] : vector<4xf32>
+
+// -----
+
+// CHECK-LABEL: func @transfer_broadcasting(
+// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
+// CHECK-SAME: %[[ARG1:.*]]: index
+// CHECK-SAME: %[[ARG2:.*]]: vector<1xi1>
+#broadcast_1d = affine_map<(d0, d1) -> (0)>
+func.func @transfer_broadcasting(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<1xi1>) -> vector<4xf32> {
+  %cf0 = arith.constant 0.0 : f32
+  %res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask
+    {in_bounds = [true], permutation_map = #broadcast_1d}
+      : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
+  return %res : vector<4xf32>
+}
+// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00>
+// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
+// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[CST]]
+// CHECK: %[[BROADCAST:.*]] = vector.broadcast %[[SELECT]] : vector<1xf32> to vector<4xf32>
+// CHECK: return %[[BROADCAST]] : vector<4xf32>
+
+// -----
+
+// CHECK-LABEL: func @transfer_scalar(
+// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
+// CHECK-SAME: %[[ARG1:.*]]: index
+// CHECK-SAME: %[[ARG2:.*]]: vector<1xi1>
+func.func @transfer_scalar(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<1xi1>) -> vector<1xf32> {
+  %cf0 = arith.constant 0.0 : f32
+  %res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask
+    {in_bounds = [true]}
+      : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<1xf32>
+  return %res : vector<1xf32>
+}
+// CHECK: %[[CST:.*]] = arith.constant dense<0.000000e+00>
+// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
+// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[CST]]
+// CHECK: return %[[SELECT]] : vector<1xf32>

``````````

</details>


https://github.com/llvm/llvm-project/pull/131803


More information about the Mlir-commits mailing list