[Mlir-commits] [mlir] [MLIR] Allowing unsupported conv2d op to fail gracefully from vectorization (PR #130181)
Zhuoran Yin
llvmlistbot at llvm.org
Tue Mar 11 07:42:08 PDT 2025
================
@@ -1939,6 +1939,127 @@ vectorizeInsertSliceOpPrecondition(tensor::InsertSliceOp sliceOp,
return success();
}
+namespace {
+bool isCastOfBlockArgument(Operation *op) {
+ return isa<CastOpInterface>(op) && op->getNumOperands() == 1 &&
+ isa<BlockArgument>(op->getOperand(0));
+}
+
+// Returns true iff it is a valid conv/pooling op.
+// If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction
+// + yield) and rhs is not used) then it is the body of a pooling
+// If conv, check for single `mul` predecessor. The `mul` operands must be
+// block arguments or extension of block arguments.
+// Otherwise, check for one or zero `ext` predecessor. The `ext` operands
+// must be block arguments or extension of block arguments.
+enum OperKind { Conv, Pool };
+bool getOperKind(Operation *reduceOp, OperKind &oper) {
+ int numBlockArguments =
+ llvm::count_if(reduceOp->getOperands(), llvm::IsaPred<BlockArgument>);
+
+ switch (numBlockArguments) {
+ case 1: {
+ // Will be convolution if feeder is a MulOp.
+ // A strength reduced version of MulOp for i1 type is AndOp which is also
+ // supported. Otherwise, it can be pooling. This strength reduction logic
+ // is in `buildBinaryFn` helper in the Linalg dialect.
+ auto feedValIt = llvm::find_if_not(reduceOp->getOperands(),
+ llvm::IsaPred<BlockArgument>);
+ Operation *feedOp = (*feedValIt).getDefiningOp();
+ // llvm::outs() << "feedOp: " << *feedOp << "\n";
+ if (isCastOfBlockArgument(feedOp)) {
+ oper = Pool;
+ } else if (!((isa<arith::MulIOp, arith::MulFOp>(feedOp) ||
+ (isa<arith::AndIOp>(feedOp) &&
+ feedOp->getResultTypes()[0].isInteger(1))) &&
+ llvm::all_of(feedOp->getOperands(), [](Value v) {
+ if (isa<BlockArgument>(v))
+ return true;
+ if (Operation *op = v.getDefiningOp())
+ return isCastOfBlockArgument(op);
+ return false;
+ }))) {
+ return false;
+ }
+ return true;
+ }
+ case 2:
+ // Must be pooling
+ oper = Pool;
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool isSupportedPoolKind(vector::CombiningKind kind) {
+ switch (kind) {
+ case vector::CombiningKind::ADD:
+ case vector::CombiningKind::MAXNUMF:
+ case vector::CombiningKind::MAXIMUMF:
+ case vector::CombiningKind::MAXSI:
+ case vector::CombiningKind::MAXUI:
+ case vector::CombiningKind::MINNUMF:
+ case vector::CombiningKind::MINIMUMF:
+ case vector::CombiningKind::MINSI:
+ case vector::CombiningKind::MINUI:
+ return true;
+ default:
+ return false;
+ }
+}
+} // namespace
+
+static LogicalResult vectorizeConvOpPrecondition(linalg::LinalgOp convOp) {
+ if (convOp.getNumDpsInputs() != 2 || convOp.getNumDpsInits() != 1)
+ return failure();
+
+ auto lhsShaped = convOp.getDpsInputOperand(0)->get();
+ auto rhsShaped = convOp.getDpsInputOperand(1)->get();
+ auto resShaped = convOp.getDpsInitOperand(0)->get();
+ auto lhsShapedType = dyn_cast<ShapedType>(lhsShaped.getType());
+ auto rhsShapedType = dyn_cast<ShapedType>(rhsShaped.getType());
+ auto resShapedType = dyn_cast<ShapedType>(resShaped.getType());
+ if (!lhsShapedType || !rhsShapedType || !resShapedType)
+ return failure();
+ // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR
+ // (non-channeled convolution -> LHS and RHS both have single dimensions).
+ if ((lhsShapedType.getRank() != 3 || resShapedType.getRank() != 3) &&
+ (lhsShapedType.getRank() != 1 || resShapedType.getRank() != 1))
+ return failure();
+
+ Operation *reduceOp = matchLinalgReduction(convOp.getDpsInitOperand(0));
+ if (!reduceOp)
+ return failure();
+
+ OperKind oper = Conv;
+ if (!getOperKind(reduceOp, oper))
+ return failure();
+ auto maybeKind = getCombinerOpKind(reduceOp);
+ // Typically convolution will have a `Add` CombiningKind but for i1 type it
+ // can get strength reduced to `OR` which is also supported. This strength
+ // reduction logic is in `buildBinaryFn` helper in the Linalg dialect.
+ if (!maybeKind || ((*maybeKind != vector::CombiningKind::ADD &&
+ *maybeKind != vector::CombiningKind::OR) &&
+ (oper != Pool || !isSupportedPoolKind(*maybeKind)))) {
+ return failure();
+ }
+
+ auto rhsRank = rhsShapedType.getRank();
+ switch (oper) {
+ case Conv:
+ if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3)
+ return failure();
+ break;
----------------
jerryyin wrote:
Taking a second look, I've decided that switch case is an overkill so just make it if/else instead.
https://github.com/llvm/llvm-project/pull/130181
More information about the Mlir-commits
mailing list