[Mlir-commits] [mlir] 967ab7e - [mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130293)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Mar 10 07:49:10 PDT 2025
Author: Thomas Preud'homme
Date: 2025-03-10T14:49:05Z
New Revision: 967ab7e08e62a35cc65f34e21fbeb00abf3eb83f
URL: https://github.com/llvm/llvm-project/commit/967ab7e08e62a35cc65f34e21fbeb00abf3eb83f
DIFF: https://github.com/llvm/llvm-project/commit/967ab7e08e62a35cc65f34e21fbeb00abf3eb83f.diff
LOG: [mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130293)
Current lowering for tosa.depthwise_conv2d assumes if both zero points
are zero then it's a floating-point operation by hardcoding the use of a
arith.addf in the lowered code. Fix code to check for the element type
to decide what add operation to use.
Added:
Modified:
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index 13c62b2d3e91c..4f79d5a0bea96 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -477,13 +477,13 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point must be zero for non-int8 integer types");
- bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
+ bool hasNullZps = (inputZpVal == 0) && (weightZpVal == 0);
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();
// Apply padding as necessary.
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
- if (hasZp) {
+ if (!hasNullZps) {
int64_t intMin =
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
@@ -536,7 +536,7 @@ class DepthwiseConvConverter
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
- if (!hasZp) {
+ if (hasNullZps) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
@@ -556,8 +556,13 @@ class DepthwiseConvConverter
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
- Value added = nestedBuilder.create<arith::AddFOp>(
- loc, args[0], args[1]);
+ Value added;
+ if (llvm::isa<FloatType>(inputETy))
+ added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
+ args[1]);
+ else
+ added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
+ args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 341f773c79a5e..fdaaa19ab741d 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -824,6 +824,30 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// -----
+// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
+// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+
+// CHECK-LABEL: @depthwise_int_conv_zero_zp
+func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
+ // CHECK: [[INIT:%.+]] = tensor.empty()
+ // CHECK: [[CST0:%.+]] = arith.constant 0
+ // CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
+ // CHECK: [[OUT:%.+]] = tensor.empty()
+ // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
+ // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
+ // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
+ // CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
+ // CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
+ // CHECK: linalg.yield [[ADD]] : i32
+ // CHECK: } -> tensor<1x5x5x33xi32>
+ %input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %weight_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
+ return
+}
+
+// -----
+
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
More information about the Mlir-commits
mailing list