[Mlir-commits] [mlir] 659cca7 - Revert "[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130282)"
Thomas Preud'homme
llvmlistbot at llvm.org
Fri Mar 7 06:21:16 PST 2025
Author: Thomas Preud'homme
Date: 2025-03-07T14:19:26Z
New Revision: 659cca78a1f849e6ba2279946cc8434612200305
URL: https://github.com/llvm/llvm-project/commit/659cca78a1f849e6ba2279946cc8434612200305
DIFF: https://github.com/llvm/llvm-project/commit/659cca78a1f849e6ba2279946cc8434612200305.diff
LOG: Revert "[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130282)"
This reverts commit e22579a6752801a5d3ced59c7a2e2499d547c657.
Added:
Modified:
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
index c8c1975177b90..2a2589e19d0ac 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
@@ -477,21 +477,27 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point must be zero for non-int8 integer types");
+ bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();
// Apply padding as necessary.
- int64_t intMin = APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
- int64_t intMax = APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
- .getSExtValue();
+ TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
+ if (hasZp) {
+ int64_t intMin =
+ APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
+ int64_t intMax =
+ APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth())
+ .getSExtValue();
- if (inputZpVal < intMin || inputZpVal > intMax)
- return rewriter.notifyMatchFailure(
- op, "tosa.depthwise_conv op quantization has zp outside of input "
- "range");
+ if (inputZpVal < intMin || inputZpVal > intMax)
+ return rewriter.notifyMatchFailure(
+ op, "tosa.depthwise_conv op quantization has zp outside of input "
+ "range");
- TypedAttr zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);
+ zeroAttr = rewriter.getIntegerAttr(inputETy, inputZpVal);
+ }
llvm::SmallVector<int64_t> pad;
pad.resize(2, 0);
@@ -530,7 +536,7 @@ class DepthwiseConvConverter
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
- if (inputZpVal == 0 && weightZpVal == 0) {
+ if (!hasZp) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
@@ -550,13 +556,8 @@ class DepthwiseConvConverter
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
- Value added;
- if (llvm::isa<FloatType>(inputETy))
- added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
- args[1]);
- else
- added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
- args[1]);
+ Value added = nestedBuilder.create<arith::AddFOp>(
+ loc, args[0], args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 32ef4af2efa53..5bb4a3bddb51b 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -798,10 +798,9 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// CHECK: arith.subi
// CHECK: arith.muli
// CHECK: arith.divui
- // CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: %[[PADDED:.+]] = tensor.pad %arg0 low[0, 1, 3, 0] high[0, 2, 4, 0] {
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: index, %[[ARG4:[0-9a-zA-Z_]+]]: index, %[[ARG5:[0-9a-zA-Z_]+]]: index, %[[ARG6:[0-9a-zA-Z_]+]]: index):
- // CHECK: tensor.yield [[CST0]] : f32
+ // CHECK: tensor.yield %cst : f32
// CHECK: } : tensor<2x?x?x3xf32> to tensor<2x?x?x3xf32>
// CHECK: %[[CONV:.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<[1, 2]> : tensor<2xi64>} ins(%[[PADDED]], %arg1 : tensor<2x?x?x3xf32>, tensor<3x6x3x5xf32>) outs(%{{.*}} : tensor<2x?x?x3x5xf32>) -> tensor<2x?x?x3x5xf32>
// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[CONV]] {{\[}}[0], [1], [2], [3, 4]]
@@ -813,30 +812,6 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
// -----
-// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
-// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
-
-// CHECK-LABEL: @depthwise_int_conv_zero_zp
-func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
- // CHECK: [[INIT:%.+]] = tensor.empty()
- // CHECK: [[CST0:%.+]] = arith.constant 0
- // CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
- // CHECK: [[OUT:%.+]] = tensor.empty()
- // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
- // CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
- // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
- // CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
- // CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
- // CHECK: linalg.yield [[ADD]] : i32
- // CHECK: } -> tensor<1x5x5x33xi32>
- %input_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
- %weight_zp = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
- %2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
- return
-}
-
-// -----
-
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
More information about the Mlir-commits
mailing list