[Mlir-commits] [mlir] 9f0a912 - [mlir][test][sve] Add e2e test for linalg.pack + linalg.unpack (#129696)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Mar 5 10:47:50 PST 2025


Author: Andrzej WarzyƄski
Date: 2025-03-05T18:47:47Z
New Revision: 9f0a912a4619ebca977f7da36cd2fb7ba56f71ce

URL: https://github.com/llvm/llvm-project/commit/9f0a912a4619ebca977f7da36cd2fb7ba56f71ce
DIFF: https://github.com/llvm/llvm-project/commit/9f0a912a4619ebca977f7da36cd2fb7ba56f71ce.diff

LOG: [mlir][test][sve] Add e2e test for linalg.pack + linalg.unpack (#129696)

This patch adds an e2e test for the `linalg.pack` + `linalg.unpack` pair
with a dynamic inner tile size that's tied to SVE's "vscale":

```mlir
  %c4 = arith.constant 4 : index
  %vs = vector.vscale
  %tile_size = arith.muli %c4, %vs : index
```

This means that the actual size of the corresponding inner and outer
tile size will depend on the runtime value of "vscale".

To make the new test deterministic (and to make it easier to
experiment), I have hard-coded the value of "vscale" to 2 via (2 x 128
bits = 256 bits):
```mlir
`func.call @setArmVLBits(%c256) : (i32) -> ()
```
This can be relaxed at a later time or played with when experimenting
locally with e.g. QEMU.

NOTE: Vectorization has not been enabled yet (scalable vectorization of
`linalg.unpack` is still WIP).

Added: 
    mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir

Modified: 
    

Removed: 
    


################################################################################
diff  --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
new file mode 100644
index 0000000000000..c8b71569d9e9f
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
@@ -0,0 +1,185 @@
+// DEFINE: %{compile} =  mlir-opt %s \
+// DEFINE:  -transform-interpreter -test-transform-dialect-erase-schedule \
+// DEFINE:    --lower-vector-mask |\
+// DEFINE: mlir-opt -arm-sve-legalize-vector-storage -convert-vector-to-llvm="enable-arm-sve"\
+// DEFINE:  -test-lower-to-llvm -o %t
+// DEFINE: %{entry_point} = main
+// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void  --march=aarch64 --mattr="+sve"\
+// DEFINE:    -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils
+
+// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s
+
+/// End-to-end test for linalg.pack + linalg.unpack where one of the inner tile sizes is
+/// scalable. 
+/// NOTE: Vectorization has not been enabled yet!
+
+
+/// The main entry point
+func.func @main() {
+  // Set vscale to 2 (vector width = 256). This will have identical effect to:
+  //  * qemu-aarch64 -cpu max,sve-max-vq=2 (...)
+  // (If your platform supports it, you can play with other values as well)
+  %c256 = arith.constant 256 : i32
+  func.call @setArmVLBits(%c256) : (i32) -> ()
+
+  // Dynamic/scalable tile size (vscale x 4)
+  %c4 = arith.constant 4 : index
+  %vs = vector.vscale
+  %tile_size = arith.muli %c4, %vs : index
+
+  vector.print str "\nINNER TILE SIZE (run-time value): "
+  vector.print %tile_size : index
+
+  // Input matrix. The values and dimension have been selected so that this
+  // matrix can be viewed as:
+  //  +--------+--------+--------+
+  //  |        |        |        |
+  //  |  4x4   |  4x4   |  4x4   |
+  //  |        |        |        |
+  //  +--------+--------+--------+
+  //  |        |        |        |
+  //  |  3x4   |  3x4   |  3x4   |
+  //  |        |        |        |
+  //  +--------+--------+--------+
+  // This way, after packing, there will be "incomplete"  tiles that will
+  // contain the padding value. After unpacking, the padding value should be
+  // gone.
+  %A_before = arith.constant dense<[
+    [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+    [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+    [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+    [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+    [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6],
+    [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6],
+    [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6]
+  ]> : tensor<7x12xi32>
+
+  // STEP 1: PACK + UNPACK
+  // TODO: We should change the order to: Pack+print, Unpack+print. However, that causes the
+  // bufferization to fail with:
+  //  * 'tensor.cast' op not bufferizable under the given constraints: cannot avoid RaW conflict
+  // Investigate and either fix or remove this comment (if impossible to work-around).
+  %A_pack = func.call @pack_main(%A_before, %tile_size) : (tensor<7x12xi32>, index) -> tensor<2x?x4x?xi32>
+  %A_unpack = func.call @unpack_main(%A_pack, %tile_size) : (tensor<2x?x4x?xi32>, index) -> tensor<7x12xi32>
+
+  // STEP 2: Print the matrices
+  vector.print str "\nINPUT MATRIX (before packing)\n"
+  %A_before_cast = tensor.cast %A_before : tensor<7x12xi32> to tensor<*xi32>
+  call @printMemrefI32(%A_before_cast) : (tensor<*xi32>) -> ()
+
+  vector.print str "\nINPUT MATRIX (after packing)\n"
+  %A_pack_cast = tensor.cast %A_pack : tensor<2x?x4x?xi32> to tensor<*xi32>
+  // There ought to be at least one pad value inserted into a tile
+  // CHECK-LABEL:  (after packing)
+  // CHECK:  123
+  call @printMemrefI32(%A_pack_cast) : (tensor<*xi32>) -> ()
+
+  vector.print str "\nINPUT MATRIX (after unpacking)\n"
+  %A_unpack_cast = tensor.cast %A_unpack : tensor<7x12xi32> to tensor<*xi32>
+  // This ought to match the input matrix
+  // CHECK-LABEL:  (after unpacking)
+  // CHECK:  [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+  // CHECK:  [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+  // CHECK:  [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+  // CHECK:  [1,   1,   1,   1,   2,   2,   2,   2,  3,   3,   3,   3],
+  // CHECK:  [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6],
+  // CHECK:  [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6],
+  // CHECK:  [4,   4,   4,   4,   5,   5,   5,   5,  6,   6,   6,   6]
+  call @printMemrefI32(%A_unpack_cast) : (tensor<*xi32>) -> ()
+
+  return
+}
+
+/// Takes the unpacked matrix + inner tile size to use and return the packed matrix.
+func.func private @pack_main(%A: tensor<7x12xi32>, %inner_tile_size: index) -> (tensor<2x?x4x?xi32>) {
+  // Get the size of dim (we could skip tensor.dim, but this way we can keep it generic)
+  %c1 = arith.constant 1 : index
+  %dim_1 = tensor.dim %A, %c1 : tensor<7x12xi32>
+
+  // Compute the outer-tile size corresponding to the dynamic inner tile size.
+  // NOTE: This step is importantant. While as a user we would only tweak the
+  // inner tile sizes, we need to make sure that the outer sizes are updated
+  // accordingly.
+  %outer_tile_size = arith.ceildivui %dim_1, %inner_tile_size : index
+
+  // NOTE: This is deliberately much larger than the input values in %A_before
+  // so that it's easy to spot it in the output.
+  %pad_val = arith.constant 123 : i32
+
+  %A_pack_empty = tensor.empty(%outer_tile_size, %inner_tile_size) : tensor<2x?x4x?xi32>
+
+  %A_pack = linalg.pack %A
+    padding_value(%pad_val : i32)
+    inner_dims_pos = [0, 1]
+    inner_tiles = [4, %inner_tile_size]
+    into %A_pack_empty : tensor<7x12xi32> -> tensor<2x?x4x?xi32>
+
+  return %A_pack : tensor<2x?x4x?xi32>
+}
+
+/// Takes the packed matrix, unpacks it and returns the result.
+func.func private @unpack_main(%A_pack : tensor<2x?x4x?xi32>, %inner_tile_size: index) -> tensor<7x12xi32> {
+  %A_unpack_empty = tensor.empty() : tensor<7x12xi32>
+
+  %A_unpack = linalg.unpack %A_pack
+    inner_dims_pos = [0, 1]
+    inner_tiles = [4, %inner_tile_size]
+    into %A_unpack_empty : tensor<2x?x4x?xi32> -> tensor<7x12xi32>
+
+  return %A_unpack : tensor<7x12xi32>
+}
+
+module @transforms attributes { transform.with_named_sequence } {
+  transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
+    %pack = transform.structured.match ops{["linalg.pack"]} in %module : (!transform.any_op) -> !transform.any_op
+    %unpack = transform.structured.match ops{["linalg.unpack"]} in %module : (!transform.any_op) -> !transform.any_op
+
+    // 1.1 Tile the linalg.pack Op so that we can decompose it into e.g. tensor.pad
+    //    and other lower-level Ops (see step 2.1)
+    %tiled_pack_op_p, %loops_pack:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+       : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+    // 1.2 Tile the linalg.unpack Op so that we can decompose it into e.g. tensor.pad
+    //    and other lower-level Ops (see step 2)
+    %tiled_unpack_op_p, %loops_unpack:2 = transform.structured.tile_using_for %unpack tile_sizes [4, 1]
+       : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+    // 2.1. Decompose tiled PackOp into lower-level Ops
+    %func_op_pack = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+    transform.apply_patterns to %func_op_pack {
+      transform.apply_patterns.linalg.decompose_pack_unpack
+      transform.apply_patterns.linalg.decompose_pad
+    } : !transform.op<"func.func">
+
+    transform.apply_patterns to %func_op_pack {
+      transform.apply_patterns.tensor.fold_tensor_subset_ops
+      transform.apply_patterns.canonicalization
+    } : !transform.op<"func.func">
+
+    // 2.1. Decompose tiled UnpackOp into lower-level Ops
+    %func_op_unpack = transform.get_parent_op %tiled_unpack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+    transform.apply_patterns to %func_op_unpack {
+      transform.apply_patterns.linalg.decompose_pack_unpack
+    } : !transform.op<"func.func">
+
+    transform.apply_patterns to %func_op_unpack {
+      transform.apply_patterns.tensor.fold_tensor_subset_ops
+      transform.apply_patterns.canonicalization
+    } : !transform.op<"func.func">
+
+   // 3. Bufferize before lowering to LLVM
+   %bufferize = transform.bufferization.one_shot_bufferize %module
+     {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+   // 4. Canonicalize
+   %func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+   transform.apply_patterns to %func_op_bufferized {
+     transform.apply_patterns.canonicalization
+   } : !transform.op<"func.func">
+
+    transform.yield
+  }
+}
+
+func.func private @printMemrefI32(%ptr : tensor<*xi32>)
+func.func private @setArmVLBits(%bits : i32)


        


More information about the Mlir-commits mailing list