[Mlir-commits] [mlir] 1fc49ff - [MLIR][AMDGPU] Add OCP FP8 support for new hardware (#127728)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Mar 3 12:10:35 PST 2025
Author: Mirza Halilčević
Date: 2025-03-03T14:10:31-06:00
New Revision: 1fc49ff59354ba6f6262018d52ff4e88a54372f8
URL: https://github.com/llvm/llvm-project/commit/1fc49ff59354ba6f6262018d52ff4e88a54372f8
DIFF: https://github.com/llvm/llvm-project/commit/1fc49ff59354ba6f6262018d52ff4e88a54372f8.diff
LOG: [MLIR][AMDGPU] Add OCP FP8 support for new hardware (#127728)
(Continuing from #106160)
This PR addresses remaining review comments from the original PR.
Original PR Description
---
Upcoming hardware (gfx12 and some future gfx9) will support the OCP
8-bit float formats for their matrix multiplication intrinsics and
conversion operations, retaining existing opcodes and compiler builtins.
This commit adds support for these types to the MLIR wrappers around
such operations, ensuring that the OCP types aren't used to generate
those builtins on hardware that doesn't expect that format and,
conversely, to ensure that the pre-OCP formats aren't used on new
hardware.
---------
Signed-off-by: Mirza Halilcevic <mirza.halilcevic at amd.com>
Co-authored-by: Paul Fuqua <pf at acm.org>
Co-authored-by: Krzysztof Drewniak <Krzysztof.Drewniak at amd.com>
Added:
mlir/test/Conversion/AMDGPUToROCDL/8-bit-floats-ocp.mlir
mlir/test/Conversion/ArithToAMDGPU/8-bit-float-saturation-ocp.mlir
mlir/test/Conversion/ArithToAMDGPU/8-bit-floats-ocp.mlir
Modified:
mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
mlir/include/mlir/Dialect/AMDGPU/Utils/Chipset.h
mlir/include/mlir/IR/Types.h
mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp
mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
mlir/lib/IR/Types.cpp
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td b/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
index 6bc31df2164c0..3acc383923ca8 100644
--- a/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
+++ b/mlir/include/mlir/Dialect/AMDGPU/IR/AMDGPU.td
@@ -83,8 +83,8 @@ class AMDGPU_Op<string mnemonic, list<Trait> traits = []> :
def AMDGPU_ExtPackedFp8Op :
AMDGPU_Op<"ext_packed_fp8", [Pure]>,
- Arguments<(ins AnyTypeOf<[F8E5M2FNUZ, F8E4M3FNUZ,
- VectorOfLengthAndType<[1, 2, 3, 4], [F8E5M2FNUZ, F8E4M3FNUZ]>]>:$source,
+ Arguments<(ins AnyTypeOf<[F8E5M2FNUZ, F8E4M3FNUZ, F8E5M2, F8E4M3FN,
+ VectorOfLengthAndType<[1, 2, 3, 4], [F8E5M2FNUZ, F8E4M3FNUZ, F8E5M2, F8E4M3FN]>]>:$source,
ConfinedAttr<I32Attr, [IntNonNegative, IntMaxValue<3>]>:$index)>,
Results<(outs F32:$res)> {
let summary = "Extend one of a vector of packed fp8 values to a float";
@@ -110,8 +110,8 @@ def AMDGPU_PackedTrunc2xFp8Op :
Arguments<(ins F32:$sourceA,
Optional<F32>:$sourceB,
ConfinedAttr<I32Attr, [IntNonNegative, IntMaxValue<1>]>:$wordIndex,
- Optional<FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ]>>:$existing)>,
- Results<(outs FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ]>:$res)> {
+ Optional<FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ, F8E4M3FN, F8E5M2]>>:$existing)>,
+ Results<(outs FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ, F8E4M3FN, F8E5M2]>:$res)> {
let summary = "Round two floats into a packed vector of 8-bit floats";
let description = [{
Round the inputs `sourceA` and `sourceB` (which is undefined if not
@@ -137,8 +137,8 @@ def AMDGPU_PackedStochRoundFp8Op :
Arguments<(ins F32:$source,
I32:$stochiasticParam,
ConfinedAttr<I32Attr, [IntNonNegative, IntMaxValue<3>]>:$storeIndex,
- Optional<FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ]>>:$existing)>,
- Results<(outs FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ]>:$res)> {
+ Optional<FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ, F8E4M3FN, F8E5M2]>>:$existing)>,
+ Results<(outs FixedVectorOfLengthAndType<[4], [F8E4M3FNUZ, F8E5M2FNUZ, F8E4M3FN, F8E5M2]>:$res)> {
let summary = "Round float stochiastically into a packed vector of 8-bit floats";
let description = [{
Round the input `source`, adding in `stochiasticParam`, and place it into
@@ -651,7 +651,7 @@ def MFMAInTypes : AnyTypeOf<[F32, F64, I32, I64,
VectorOfLengthAndType<[4], [F16]>,
VectorOfLengthAndType<[2, 4], [BF16]>,
VectorOfLengthAndType<[4, 8], [I8]>,
- VectorOfLengthAndType<[8], [F8E5M2FNUZ, F8E4M3FNUZ]>]>;
+ VectorOfLengthAndType<[8], [F8E5M2FNUZ, F8E4M3FNUZ, F8E5M2, F8E4M3FN]>]>;
def MFMAOutTypes : AnyTypeOf<[F64,
VectorOfLengthAndType<[4, 16, 32], [F32]>,
VectorOfLengthAndType<[4, 16, 32], [I32]>,
diff --git a/mlir/include/mlir/Dialect/AMDGPU/Utils/Chipset.h b/mlir/include/mlir/Dialect/AMDGPU/Utils/Chipset.h
index a5dab1ab89630..ca9809799588c 100644
--- a/mlir/include/mlir/Dialect/AMDGPU/Utils/Chipset.h
+++ b/mlir/include/mlir/Dialect/AMDGPU/Utils/Chipset.h
@@ -49,6 +49,11 @@ struct Chipset {
#undef DEFINE_COMP_OPERATOR
};
+inline bool hasOcpFp8(const Chipset &chipset) {
+ return (chipset.majorVersion == 9 && chipset.minorVersion >= 5) ||
+ chipset.majorVersion >= 12;
+}
+
} // namespace mlir::amdgpu
#endif
diff --git a/mlir/include/mlir/IR/Types.h b/mlir/include/mlir/IR/Types.h
index 0e82ad2be907a..e60f19a1ca585 100644
--- a/mlir/include/mlir/IR/Types.h
+++ b/mlir/include/mlir/IR/Types.h
@@ -132,6 +132,9 @@ class Type {
bool isF64() const;
bool isF80() const;
bool isF128() const;
+ /// Return true if this is an float type (with the specified width).
+ bool isFloat() const;
+ bool isFloat(unsigned width) const;
/// Return true if this is an integer type (with the specified width).
bool isInteger() const;
diff --git a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
index 6e1173d7adbfc..949424db7c4d6 100644
--- a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
+++ b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
@@ -601,6 +601,20 @@ static void wmmaPushOutputOperand(ConversionPatternRewriter &rewriter,
}
}
+/// Return true if `type` is the E5M2 variant of an 8-bit float that is
+/// supported by the `_bf8` instructions on the given `chipset`.
+static bool typeIsExpectedBf8ForChipset(Chipset chipset, Type type) {
+ return (chipset == kGfx942 && isa<Float8E5M2FNUZType>(type)) ||
+ (hasOcpFp8(chipset) && isa<Float8E5M2Type>(type));
+}
+
+/// Return true if `type` is the E4M3FN variant of an 8-bit float that is
+/// supported by the `_fp8` instructions on the given `chipset`.
+static bool typeIsExpectedFp8ForChipset(Chipset chipset, Type type) {
+ return (chipset == kGfx942 && isa<Float8E4M3FNUZType>(type)) ||
+ (hasOcpFp8(chipset) && isa<Float8E4M3FNType>(type));
+}
+
/// Return the `rocdl` intrinsic corresponding to a MFMA operation `mfma`
/// if one exists. This includes checking to ensure the intrinsic is supported
/// on the architecture you are compiling for.
@@ -697,40 +711,38 @@ static std::optional<StringRef> mfmaOpToIntrinsic(MFMAOp mfma,
return ROCDL::mfma_f64_4x4x4f64::getOperationName();
}
- if (isa<Float8E5M2FNUZType>(sourceElem) && destElem.isF32() &&
- chipset >= kGfx942) {
+ if (destElem.isF32() && typeIsExpectedBf8ForChipset(chipset, sourceElem)) {
// Known to be correct because there are no scalar f8 instructions and
// because a length mismatch will have been caught by the verifier.
Type sourceBElem =
cast<VectorType>(mfma.getSourceB().getType()).getElementType();
if (m == 16 && n == 16 && k == 32 && b == 1) {
- if (isa<Float8E5M2FNUZType>(sourceBElem))
+ if (typeIsExpectedBf8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_16x16x32_bf8_bf8::getOperationName();
- if (isa<Float8E4M3FNUZType>(sourceBElem))
+ if (typeIsExpectedFp8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_16x16x32_bf8_fp8::getOperationName();
}
if (m == 32 && n == 32 && k == 16 && b == 1) {
- if (isa<Float8E5M2FNUZType>(sourceBElem))
+ if (typeIsExpectedBf8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_32x32x16_bf8_bf8::getOperationName();
- if (isa<Float8E4M3FNUZType>(sourceBElem))
+ if (typeIsExpectedFp8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_32x32x16_bf8_fp8::getOperationName();
}
}
- if (isa<Float8E4M3FNUZType>(sourceElem) && destElem.isF32() &&
- chipset >= kGfx942) {
+ if (destElem.isF32() && typeIsExpectedFp8ForChipset(chipset, sourceElem)) {
Type sourceBElem =
cast<VectorType>(mfma.getSourceB().getType()).getElementType();
if (m == 16 && n == 16 && k == 32 && b == 1) {
- if (isa<Float8E5M2FNUZType>(sourceBElem))
+ if (typeIsExpectedBf8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_16x16x32_fp8_bf8::getOperationName();
- if (isa<Float8E4M3FNUZType>(sourceBElem))
+ if (typeIsExpectedFp8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_16x16x32_fp8_fp8::getOperationName();
}
if (m == 32 && n == 32 && k == 16 && b == 1) {
- if (isa<Float8E5M2FNUZType>(sourceBElem))
+ if (typeIsExpectedBf8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_32x32x16_fp8_bf8::getOperationName();
- if (isa<Float8E4M3FNUZType>(sourceBElem))
+ if (typeIsExpectedFp8ForChipset(chipset, sourceBElem))
return ROCDL::mfma_f32_32x32x16_fp8_fp8::getOperationName();
}
}
@@ -936,7 +948,7 @@ LogicalResult ExtPackedFp8OpLowering::matchAndRewrite(
ExtPackedFp8Op op, ExtPackedFp8OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
- if (chipset.majorVersion != 9 || chipset < kGfx942)
+ if (!(chipset == kGfx942 || hasOcpFp8(chipset)))
return rewriter.notifyMatchFailure(
loc, "Fp8 conversion instructions are not available on target "
"architecture and their emulation is not implemented");
@@ -966,10 +978,10 @@ LogicalResult ExtPackedFp8OpLowering::matchAndRewrite(
}
Value i32Source = rewriter.create<LLVM::BitcastOp>(loc, i32, source);
Value wordSel = createI32Constant(rewriter, loc, op.getIndex());
- if (isa<Float8E5M2FNUZType>(sourceElemType)) {
+ if (typeIsExpectedBf8ForChipset(chipset, sourceElemType)) {
rewriter.replaceOpWithNewOp<ROCDL::CvtF32Bf8Op>(op, f32, i32Source,
wordSel);
- } else if (isa<Float8E4M3FNUZType>(sourceElemType)) {
+ } else if (typeIsExpectedFp8ForChipset(chipset, sourceElemType)) {
rewriter.replaceOpWithNewOp<ROCDL::CvtF32Fp8Op>(op, f32, i32Source,
wordSel);
}
@@ -980,7 +992,7 @@ LogicalResult PackedTrunc2xFp8OpLowering::matchAndRewrite(
PackedTrunc2xFp8Op op, PackedTrunc2xFp8OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
- if (chipset.majorVersion != 9 || chipset < kGfx942)
+ if (!(chipset == kGfx942 || hasOcpFp8(chipset)))
return rewriter.notifyMatchFailure(
loc, "Fp8 conversion instructions are not available on target "
"architecture and their emulation is not implemented");
@@ -1001,10 +1013,10 @@ LogicalResult PackedTrunc2xFp8OpLowering::matchAndRewrite(
Value wordSel = createI1Constant(rewriter, loc, op.getWordIndex());
Value result;
- if (isa<Float8E5M2FNUZType>(resultElemType))
+ if (typeIsExpectedBf8ForChipset(chipset, resultElemType))
result = rewriter.create<ROCDL::CvtPkBf8F32Op>(loc, i32, sourceA, sourceB,
existing, wordSel);
- else if (isa<Float8E4M3FNUZType>(resultElemType))
+ else if (typeIsExpectedFp8ForChipset(chipset, resultElemType))
result = rewriter.create<ROCDL::CvtPkFp8F32Op>(loc, i32, sourceA, sourceB,
existing, wordSel);
@@ -1017,7 +1029,7 @@ LogicalResult PackedStochRoundFp8OpLowering::matchAndRewrite(
PackedStochRoundFp8Op op, PackedStochRoundFp8OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
- if (chipset.majorVersion != 9 || chipset < kGfx942)
+ if (!(chipset == kGfx942 || hasOcpFp8(chipset)))
return rewriter.notifyMatchFailure(
loc, "Fp8 conversion instructions are not available on target "
"architecture and their emulation is not implemented");
@@ -1036,10 +1048,10 @@ LogicalResult PackedStochRoundFp8OpLowering::matchAndRewrite(
Value byteSel = createI32Constant(rewriter, loc, op.getStoreIndex());
Value result;
- if (isa<Float8E5M2FNUZType>(resultElemType))
+ if (typeIsExpectedBf8ForChipset(chipset, resultElemType))
result = rewriter.create<ROCDL::CvtSrBf8F32Op>(loc, i32, source, stoch,
existing, byteSel);
- else if (isa<Float8E4M3FNUZType>(resultElemType))
+ else if (typeIsExpectedFp8ForChipset(chipset, resultElemType))
result = rewriter.create<ROCDL::CvtSrFp8F32Op>(loc, i32, source, stoch,
existing, byteSel);
diff --git a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
index b22d852f7c543..cba71740f9380 100644
--- a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
+++ b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
@@ -30,6 +30,9 @@ using namespace mlir;
using namespace mlir::amdgpu;
namespace {
+// Define commonly used chipsets versions for convenience.
+constexpr Chipset kGfx942 = Chipset(9, 4, 2);
+
struct ArithToAMDGPUConversionPass final
: impl::ArithToAMDGPUConversionPassBase<ArithToAMDGPUConversionPass> {
using impl::ArithToAMDGPUConversionPassBase<
@@ -41,6 +44,10 @@ struct ArithToAMDGPUConversionPass final
struct ExtFOnFloat8RewritePattern final : OpRewritePattern<arith::ExtFOp> {
using OpRewritePattern::OpRewritePattern;
+ Chipset chipset;
+ ExtFOnFloat8RewritePattern(MLIRContext *ctx, Chipset chipset)
+ : OpRewritePattern::OpRewritePattern(ctx), chipset(chipset) {}
+
LogicalResult match(arith::ExtFOp op) const override;
void rewrite(arith::ExtFOp op, PatternRewriter &rewriter) const override;
};
@@ -68,6 +75,14 @@ struct TruncfToFloat16RewritePattern final
} // end namespace
+static LogicalResult isSupportedF8(Type elementType, Chipset chipset) {
+ if (chipset == kGfx942)
+ return success(isa<Float8E4M3FNUZType, Float8E5M2FNUZType>(elementType));
+ if (hasOcpFp8(chipset))
+ return success(isa<Float8E4M3FNType, Float8E5M2Type>(elementType));
+ return failure();
+}
+
static Value castF32To(Type elementType, Value f32, Location loc,
PatternRewriter &rewriter) {
if (elementType.isF32())
@@ -86,7 +101,7 @@ LogicalResult ExtFOnFloat8RewritePattern::match(arith::ExtFOp op) const {
return failure();
inType = inVecType.getElementType();
}
- return success(isa<Float8E5M2FNUZType, Float8E4M3FNUZType>(inType));
+ return isSupportedF8(inType, chipset);
}
void ExtFOnFloat8RewritePattern::rewrite(arith::ExtFOp op,
@@ -219,7 +234,8 @@ LogicalResult TruncFToFloat8RewritePattern::match(arith::TruncFOp op) const {
if (inType && inType.getWidth() <= 8 && saturateFP8)
// Conversion between 8-bit floats is not supported with truncation enabled.
return failure();
- return success(isa<Float8E5M2FNUZType, Float8E4M3FNUZType>(outType));
+
+ return isSupportedF8(outType, chipset);
}
void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
@@ -365,7 +381,7 @@ void mlir::arith::populateArithToAMDGPUConversionPatterns(
bool saturateFP8Truncf, bool allowPackedF16Rtz, Chipset chipset) {
if (convertFP8Arithmetic) {
- patterns.add<ExtFOnFloat8RewritePattern>(patterns.getContext());
+ patterns.add<ExtFOnFloat8RewritePattern>(patterns.getContext(), chipset);
patterns.add<TruncFToFloat8RewritePattern>(patterns.getContext(),
saturateFP8Truncf, chipset);
}
@@ -384,7 +400,7 @@ void ArithToAMDGPUConversionPass::runOnOperation() {
}
bool convertFP8Arithmetic =
- maybeChipset->majorVersion == 9 && *maybeChipset >= Chipset(9, 4, 2);
+ *maybeChipset == kGfx942 || hasOcpFp8(*maybeChipset);
arith::populateArithToAMDGPUConversionPatterns(
patterns, convertFP8Arithmetic, saturateFP8Truncf, allowPackedF16Rtz,
*maybeChipset);
diff --git a/mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp b/mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp
index abeb65dbf8203..2b2a167b90c82 100644
--- a/mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp
+++ b/mlir/lib/Dialect/AMDGPU/IR/AMDGPUDialect.cpp
@@ -341,14 +341,14 @@ LogicalResult MFMAOp::verify() {
}
Type sourceBType = getSourceB().getType();
- if (isa<Float8E5M2FNUZType, Float8E4M3FNUZType>(sourceElem)) {
+ if (sourceElem.isFloat(8)) {
int64_t sourceBLen = 1;
Type sourceBElem = sourceBType;
if (auto sourceBVector = llvm::dyn_cast<VectorType>(sourceBType)) {
sourceBLen = sourceBVector.getNumElements();
sourceBElem = sourceBVector.getElementType();
}
- if (!isa<Float8E5M2FNUZType, Float8E4M3FNUZType>(sourceBElem))
+ if (!sourceBElem.isFloat(8))
return emitOpError("expected both source operands to have f8 elements");
if (sourceLen != sourceBLen)
return emitOpError(
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
index 436890443ca9a..b4d2dfb7fc760 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaValidation.cpp
@@ -686,7 +686,8 @@ LogicalResult TosaValidation::applyErrorIfCheck(Operation *op) {
bool TosaValidation::isValidElementType(Type type) {
if (isa<FloatType>(type)) {
- return type.isF32() || type.isF16() || type.isBF16();
+ return isa<Float32Type, Float16Type, BFloat16Type, Float8E4M3FNType,
+ Float8E5M2Type>(type);
} else if (auto intTy = dyn_cast<IntegerType>(type)) {
if (intTy.isSignless()) {
switch (intTy.getWidth()) {
diff --git a/mlir/lib/IR/Types.cpp b/mlir/lib/IR/Types.cpp
index 6af0c8af51ba0..765b787d3d17a 100644
--- a/mlir/lib/IR/Types.cpp
+++ b/mlir/lib/IR/Types.cpp
@@ -42,6 +42,15 @@ bool Type::isF64() const { return llvm::isa<Float64Type>(*this); }
bool Type::isF80() const { return llvm::isa<Float80Type>(*this); }
bool Type::isF128() const { return llvm::isa<Float128Type>(*this); }
+bool Type::isFloat() const { return llvm::isa<FloatType>(*this); }
+
+/// Return true if this is a float type with the specified width.
+bool Type::isFloat(unsigned width) const {
+ if (auto fltTy = llvm::dyn_cast<FloatType>(*this))
+ return fltTy.getWidth() == width;
+ return false;
+}
+
bool Type::isIndex() const { return llvm::isa<IndexType>(*this); }
bool Type::isInteger() const { return llvm::isa<IntegerType>(*this); }
diff --git a/mlir/test/Conversion/AMDGPUToROCDL/8-bit-floats-ocp.mlir b/mlir/test/Conversion/AMDGPUToROCDL/8-bit-floats-ocp.mlir
new file mode 100644
index 0000000000000..70775a603e54d
--- /dev/null
+++ b/mlir/test/Conversion/AMDGPUToROCDL/8-bit-floats-ocp.mlir
@@ -0,0 +1,109 @@
+// RUN: mlir-opt %s -convert-amdgpu-to-rocdl=chipset=gfx950 | FileCheck %s
+// RUN: mlir-opt %s -convert-amdgpu-to-rocdl=chipset=gfx1200 | FileCheck %s
+
+// CHECK-LABEL: func @ext_scalar
+// CHECK: [[V:%.+]] = builtin.unrealized_conversion_cast %{{.+}} : f8E5M2 to i8
+// CHECK-DAG: [[UNDEF:%.+]] = llvm.mlir.undef : vector<4xi8>
+// CHECK-DAG: [[C0_1:%.+]] = llvm.mlir.constant(0 : i32) : i32
+// CHECK: [[VEC:%.+]] = llvm.insertelement [[V]], [[UNDEF]]{{\[}}[[C0_1]] : i32] : vector<4xi8>
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[VEC]] : vector<4xi8> to i32
+// CHECK: [[C0_2:%.+]] = llvm.mlir.constant(0 : i32) : i32
+// CHECK: [[EXT:%.+]] = rocdl.cvt.f32.bf8 [[CAST]]{{\[}}[[C0_2]]] : f32
+// CHECK: return [[EXT]]
+func.func @ext_scalar(%v: f8E5M2) -> f32 {
+ %ret = amdgpu.ext_packed_fp8 %v[0] : f8E5M2 to f32
+ func.return %ret : f32
+}
+
+// CHECK-LABEL: func @ext_short_vec
+// CHECK: [[V:%.+]] = builtin.unrealized_conversion_cast %{{.+}} : vector<2xf8E4M3FN> to vector<2xi8>
+// CHECK-DAG: [[UNDEF:%.+]] = llvm.mlir.undef : vector<4xi8>
+// CHECK-DAG: [[C0:%.+]] = llvm.mlir.constant(0 : i32) : i32
+// CHECK: [[ELEM_0:%.+]] = llvm.extractelement [[V]]{{\[}}[[C0]] : i32] : vector<2xi8>
+// CHECK: [[VEC_0:%.+]] = llvm.insertelement [[ELEM_0]], [[UNDEF]]{{\[}}[[C0]] : i32] : vector<4xi8>
+// CHECK: [[C1_1:%.+]] = llvm.mlir.constant(1 : i32) : i32
+// CHECK: [[ELEM_1:%.+]] = llvm.extractelement [[V]]{{\[}}[[C1_1]] : i32] : vector<2xi8>
+// CHECK: [[VEC_1:%.+]] = llvm.insertelement [[ELEM_1]], [[VEC_0]]{{\[}}[[C1_1]] : i32] : vector<4xi8>
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[VEC_1]] : vector<4xi8> to i32
+// CHECK: [[C1_2:%.+]] = llvm.mlir.constant(1 : i32) : i32
+// CHECK: [[EXT:%.+]] = rocdl.cvt.f32.fp8 [[CAST]]{{\[}}[[C1_2]]] : f32
+// CHECK: return [[EXT]]
+func.func @ext_short_vec(%v: vector<2xf8E4M3FN>) -> f32 {
+ %ret = amdgpu.ext_packed_fp8 %v[1] : vector<2xf8E4M3FN> to f32
+ func.return %ret : f32
+}
+
+// CHECK-LABEL: func @ext_full_vec(
+// CHECK: [[V:%.+]] = builtin.unrealized_conversion_cast %{{.+}} : vector<4xf8E4M3FN> to vector<4xi8>
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[V]] : vector<4xi8> to i32
+// CHECK: [[C3:%.+]] = llvm.mlir.constant(3 : i32) : i32
+// CHECK: [[EXT:%.+]] = rocdl.cvt.f32.fp8 [[CAST]]{{\[}}[[C3]]] : f32
+// CHECK: return [[EXT]] : f32
+
+func.func @ext_full_vec(%v: vector<4xf8E4M3FN>) -> f32 {
+ %ret = amdgpu.ext_packed_fp8 %v[3] : vector<4xf8E4M3FN> to f32
+ func.return %ret : f32
+}
+
+// CHECK-LABEL: func @packed_trunc
+// CHECK-SAME: ([[V:%.+]]: f32)
+// CHECK: [[V2:%.+]] = llvm.mlir.undef : f32
+// CHECK: [[EXISTING:%.+]] = llvm.mlir.undef : i32
+// CHECK: [[FALSE:%.+]] = llvm.mlir.constant(false) : i1
+// CHECK: [[PACKED:%.+]] = rocdl.cvt.pk.fp8.f32 [[V]], [[V2]] -> [[EXISTING]]{{\[}}[[FALSE]]] : i32
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[PACKED]] : i32 to vector<4xi8>
+// CHECK: builtin.unrealized_conversion_cast [[CAST]] : vector<4xi8> to vector<4xf8E4M3FN>
+func.func @packed_trunc(%v: f32) -> vector<4xf8E4M3FN> {
+ %ret = amdgpu.packed_trunc_2xfp8 %v, undef into undef[word 0] : f32 to vector<4xf8E4M3FN>
+ func.return %ret : vector<4xf8E4M3FN>
+}
+
+// CHECK-LABEL: func @packed_truncx2
+// CHECK-SAME: ([[V:%.+]]: f32, [[W:%.+]]: f32)
+// CHECK: [[EXISTING:%.+]] = llvm.mlir.undef : i32
+// CHECK: [[FALSE:%.+]] = llvm.mlir.constant(false) : i1
+// CHECK: [[PACKED:%.+]] = rocdl.cvt.pk.fp8.f32 [[V]], [[W]] -> [[EXISTING]]{{\[}}[[FALSE]]] : i32
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[PACKED]] : i32 to vector<4xi8>
+// CHECK: builtin.unrealized_conversion_cast [[CAST]] : vector<4xi8> to vector<4xf8E4M3FN>
+func.func @packed_truncx2(%v: f32, %w: f32) -> vector<4xf8E4M3FN> {
+ %ret = amdgpu.packed_trunc_2xfp8 %v, %w into undef[word 0] : f32 to vector<4xf8E4M3FN>
+ func.return %ret : vector<4xf8E4M3FN>
+}
+
+// CHECK-LABEL: func @packed_truncx2_into
+// CHECK-SAME: ([[V:%.+]]: f32, [[W:%.+]]: f32, [[EXISTING:%.+]]: vector<4xf8E5M2>)
+// CHECK: [[EXISTING_BYTES:%.+]] = builtin.unrealized_conversion_cast [[EXISTING]] : vector<4xf8E5M2> to vector<4xi8>
+// CHECK: [[EXISTING_INT:%.+]] = llvm.bitcast [[EXISTING_BYTES]] : vector<4xi8> to i32
+// CHECK: [[TRUE:%.+]] = llvm.mlir.constant(true) : i1
+// CHECK: [[PACKED:%.+]] = rocdl.cvt.pk.bf8.f32 [[V]], [[W]] -> [[EXISTING_INT]]{{\[}}[[TRUE]]] : i32
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[PACKED]] : i32 to vector<4xi8>
+// CHECK: builtin.unrealized_conversion_cast [[CAST]] : vector<4xi8> to vector<4xf8E5M2>
+func.func @packed_truncx2_into(%v: f32, %w: f32, %existing: vector<4xf8E5M2>) -> vector<4xf8E5M2> {
+ %ret = amdgpu.packed_trunc_2xfp8 %v, %w into %existing[word 1] : f32 to vector<4xf8E5M2> into vector<4xf8E5M2>
+ func.return %ret : vector<4xf8E5M2>
+}
+
+// CHECK-LABEL: func @packed_stoch_round
+// CHECK-SAME: ([[V:%.+]]: f32, [[S:%.+]]: i32)
+// CHECK: [[EXISTING:%.+]] = llvm.mlir.undef : i32
+// CHECK: [[C0:%.+]] = llvm.mlir.constant(0 : i32) : i32
+// CHECK: [[PACKED:%.+]] = rocdl.cvt.sr.fp8.f32 [[V]], [[S]] -> [[EXISTING]]{{\[}}[[C0]]] : i32
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[PACKED]] : i32 to vector<4xi8>
+// CHECK: builtin.unrealized_conversion_cast [[CAST]] : vector<4xi8> to vector<4xf8E4M3FN>
+func.func @packed_stoch_round(%v: f32, %s: i32) -> vector<4xf8E4M3FN> {
+ %ret = amdgpu.packed_stoch_round_fp8 %v + %s into undef[0] : f32 to vector<4xf8E4M3FN>
+ func.return %ret : vector<4xf8E4M3FN>
+}
+
+// CHECK-LABEL: func @packed_stoch_round_into
+// CHECK-SAME: ([[V:%.+]]: f32, [[S:%.+]]: i32, [[EXISTING:%.+]]: vector<4xf8E5M2>)
+// CHECK: [[EXISTING_BYTES:%.+]] = builtin.unrealized_conversion_cast [[EXISTING]] : vector<4xf8E5M2> to vector<4xi8>
+// CHECK: [[EXISTING_INT:%.+]] = llvm.bitcast [[EXISTING_BYTES]] : vector<4xi8> to i32
+// CHECK: [[C1:%.+]] = llvm.mlir.constant(1 : i32) : i32
+// CHECK: [[PACKED:%.+]] = rocdl.cvt.sr.bf8.f32 [[V]], [[S]] -> [[EXISTING_INT]]{{\[}}[[C1]]] : i32
+// CHECK: [[CAST:%.+]] = llvm.bitcast [[PACKED]] : i32 to vector<4xi8>
+// CHECK: builtin.unrealized_conversion_cast [[CAST]] : vector<4xi8> to vector<4xf8E5M2>
+func.func @packed_stoch_round_into(%v: f32, %s: i32, %existing: vector<4xf8E5M2>) -> vector<4xf8E5M2> {
+ %ret = amdgpu.packed_stoch_round_fp8 %v + %s into %existing[1] : f32 to vector<4xf8E5M2> into vector<4xf8E5M2>
+ func.return %ret : vector<4xf8E5M2>
+}
diff --git a/mlir/test/Conversion/ArithToAMDGPU/8-bit-float-saturation-ocp.mlir b/mlir/test/Conversion/ArithToAMDGPU/8-bit-float-saturation-ocp.mlir
new file mode 100644
index 0000000000000..2df5f2fa1965f
--- /dev/null
+++ b/mlir/test/Conversion/ArithToAMDGPU/8-bit-float-saturation-ocp.mlir
@@ -0,0 +1,58 @@
+// RUN: mlir-opt --split-input-file %s \
+// RUN: --pass-pipeline='builtin.module(func.func(convert-arith-to-amdgpu{chipset=gfx950 saturate-fp8-truncf=true}))' \
+// RUN: | FileCheck %s
+
+// RUN: mlir-opt --split-input-file %s \
+// RUN: --pass-pipeline='builtin.module(func.func(convert-arith-to-amdgpu{chipset=gfx1200 saturate-fp8-truncf=true}))' \
+// RUN: | FileCheck %s
+
+// CHECK-LABEL: func.func @scalar_trunc
+// CHECK-SAME: ([[V:%.+]]: f16)
+// CHECK-DAG: [[CMin:%.+]] = arith.constant -5.734400e+04 : f16
+// CHECK-DAG: [[CMax:%.+]] = arith.constant 5.734400e+04 : f16
+// CHECK-DAG: [[CInf:%.+]] = arith.constant 0x7C00 : f16
+// CHECK-DAG: [[CNegInf:%.+]] = arith.constant 0xFC00 : f16
+// CHECK: [[ISINF:%.+]] = arith.cmpf oeq, [[V]], [[CInf]]
+// CHECK: [[ISNEGINF:%.+]] = arith.cmpf oeq, [[V]], [[CNegInf]]
+// CHECK: [[ISNAN:%.+]] = arith.cmpf uno, [[V]], [[V]]
+// CHECK: [[ISNONFINITE_1:%.+]] = arith.ori [[ISINF]], [[ISNEGINF]]
+// CHECK: [[ISNONFINITE:%.+]] = arith.ori [[ISNONFINITE_1]], [[ISNAN]]
+// CHECK: [[CLAMPEDBELOW:%.+]] = arith.maximumf [[V]], [[CMin]]
+// CHECK: [[CLAMPED:%.+]] = arith.minimumf [[CLAMPEDBELOW]], [[CMax]]
+// CHECK: [[SATURATED:%.+]] = arith.select [[ISNONFINITE]], [[V]], [[CLAMPED]]
+// CHECK: [[FLOAT:%.+]] = arith.extf [[SATURATED]] : f16 to f32
+// CHECK: [[TRUNCV:%.+]] = amdgpu.packed_trunc_2xfp8 [[FLOAT]], undef into undef[word 0] : f32 to vector<4xf8E5M2>
+// CHECK: [[W:%.+]] = vector.extract [[TRUNCV]][0] : f8E5M2 from vector<4xf8E5M2>
+// CHECK: return [[W]] : f8E5M2
+func.func @scalar_trunc(%v: f16) -> f8E5M2 {
+ %w = arith.truncf %v : f16 to f8E5M2
+ return %w : f8E5M2
+}
+
+// No 0-D test because arith.truncf hasn't been extended to support it.
+
+// -----
+
+// CHECK-LABEL: func.func @vector_trunc
+// CHECK-SAME: ([[V:%.+]]: vector<2xf32>) -> vector<2xf8E4M3FN> {
+// CHECK-DAG: [[CMin:%.+]] = arith.constant dense<-4.480000e+02> : vector<2xf32>
+// CHECK-DAG: [[CMax:%.+]] = arith.constant dense<4.480000e+02> : vector<2xf32>
+// CHECK-DAG: [[CInf:%.+]] = arith.constant dense<0x7F800000> : vector<2xf32>
+// CHECK-DAG: [[CNegInf:%.+]] = arith.constant dense<0xFF800000> : vector<2xf32>
+// CHECK: [[ISINF:%.+]] = arith.cmpf oeq, [[V]], [[CInf]]
+// CHECK: [[ISNEGINF:%.+]] = arith.cmpf oeq, [[V]], [[CNegInf]]
+// CHECK: [[ISNAN:%.+]] = arith.cmpf uno, [[V]], [[V]]
+// CHECK: [[ISNONFINITE_1:%.+]] = arith.ori [[ISINF]], [[ISNEGINF]]
+// CHECK: [[ISNONFINITE:%.+]] = arith.ori [[ISNONFINITE_1]], [[ISNAN]]
+// CHECK: [[CLAMPEDBELOW:%.+]] = arith.maximumf [[V]], [[CMin]]
+// CHECK: [[CLAMPED:%.+]] = arith.minimumf [[CLAMPEDBELOW]], [[CMax]]
+// CHECK: [[SATURATED:%.+]] = arith.select [[ISNONFINITE]], [[V]], [[CLAMPED]]
+// CHECK: [[F0:%.+]] = vector.extract [[SATURATED]][0]
+// CHECK: [[F1:%.+]] = vector.extract [[SATURATED]][1]
+// CHECK: [[W0:%.+]] = amdgpu.packed_trunc_2xfp8 [[F0]], [[F1]] into undef[word 0] : f32 to vector<4xf8E4M3FN>
+// CHECK: [[W:%.+]] = vector.extract_strided_slice [[W0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf8E4M3FN> to vector<2xf8E4M3FN>
+// CHECK: return [[W]] : vector<2xf8E4M3FN>
+func.func @vector_trunc_short(%v: vector<2xf32>) -> vector<2xf8E4M3FN> {
+ %w = arith.truncf %v : vector<2xf32> to vector<2xf8E4M3FN>
+ return %w : vector<2xf8E4M3FN>
+}
diff --git a/mlir/test/Conversion/ArithToAMDGPU/8-bit-floats-ocp.mlir b/mlir/test/Conversion/ArithToAMDGPU/8-bit-floats-ocp.mlir
new file mode 100644
index 0000000000000..0e7f58c9e6749
--- /dev/null
+++ b/mlir/test/Conversion/ArithToAMDGPU/8-bit-floats-ocp.mlir
@@ -0,0 +1,176 @@
+// RUN: mlir-opt --split-input-file %s -convert-arith-to-amdgpu="chipset=gfx950" | FileCheck %s
+// RUN: mlir-opt --split-input-file %s -convert-arith-to-amdgpu="chipset=gfx1200" | FileCheck %s
+
+// CHECK-LABEL: func.func @scalar_ext
+// CHECK-SAME: ([[V:%.+]]: f8E5M2)
+// CHECK: [[FLOAT:%.+]] = amdgpu.ext_packed_fp8 [[V]][0] : f8E5M2 to f32
+// CHECK: [[W:%.+]] = arith.truncf [[FLOAT]] : f32 to f16
+// CHECK: return [[W]]
+func.func @scalar_ext(%v: f8E5M2) -> f16 {
+ %w = arith.extf %v : f8E5M2 to f16
+ return %w : f16
+}
+
+// No 0-D test because arith.extf hasn't been extended to support it.
+
+// -----
+
+// CHECK-LABEL: func.func @vector_ext_short
+// CHECK-SAME: ([[V:%.+]]: vector<2xf8E5M2>)
+// CHECK-DAG: [[ZEROES:%.+]] = arith.constant dense<0.000000e+00> : vector<2xf64>
+// CHECK: [[FLOAT0:%.+]] = amdgpu.ext_packed_fp8 [[V]][0] : vector<2xf8E5M2> to f32
+// CHECK: [[EXT0:%.+]] = arith.extf [[FLOAT0]] : f32 to f64
+// CHECK: [[W0:%.+]] = vector.insert [[EXT0]], [[ZEROES]] [0]
+// CHECK: [[FLOAT1:%.+]] = amdgpu.ext_packed_fp8 [[V]][1] : vector<2xf8E5M2> to f32
+// CHECK: [[EXT1:%.+]] = arith.extf [[FLOAT1]]
+// CHECK: [[W1:%.+]] = vector.insert [[EXT1]], [[W0]] [1]
+// CHECK: return [[W1]] : vector<2xf64>
+
+func.func @vector_ext_short(%v: vector<2xf8E5M2>) -> vector<2xf64> {
+ %w = arith.extf %v : vector<2xf8E5M2> to vector<2xf64>
+ return %w : vector<2xf64>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @vector_ext_long
+// CHECK-SAME: ([[V:%.+]]: vector<9xf8E4M3FN>)
+// CHECK: [[V0:%.+]] = vector.extract_strided_slice [[V]] {offsets = [0], sizes = [4], strides = [1]}
+// CHECK: [[F0:%.+]] = amdgpu.ext_packed_fp8 [[V0]][0]
+// CHECK: [[W0:%.+]] = vector.insert [[F0]]
+// CHECK: [[F1:%.+]] = amdgpu.ext_packed_fp8 [[V0]][1]
+// CHECK: [[W1:%.+]] = vector.insert [[F1]], [[W0]]
+// CHECK: [[F2:%.+]] = amdgpu.ext_packed_fp8 [[V0]][2]
+// CHECK: [[W2:%.+]] = vector.insert [[F2]], [[W1]]
+// CHECK: [[F3:%.+]] = amdgpu.ext_packed_fp8 [[V0]][3]
+// CHECK: [[W3:%.+]] = vector.insert [[F3]], [[W2]]
+
+// CHECK: [[V1:%.+]] = vector.extract_strided_slice [[V]] {offsets = [4], sizes = [4], strides = [1]} : vector<9xf8E4M3FN> to vector<4xf8E4M3FN>
+// CHECK: [[F4:%.+]] = amdgpu.ext_packed_fp8 [[V1]][0]
+// CHECK: [[W4:%.+]] = vector.insert [[F4]], [[W3]]
+// CHECK: [[F5:%.+]] = amdgpu.ext_packed_fp8 [[V1]][1]
+// CHECK: [[W5:%.+]] = vector.insert [[F5]], [[W4]]
+// CHECK: [[F6:%.+]] = amdgpu.ext_packed_fp8 [[V1]][2]
+// CHECK: [[W6:%.+]] = vector.insert [[F6]], [[W5]]
+// CHECK: [[F7:%.+]] = amdgpu.ext_packed_fp8 [[V1]][3]
+// CHECK: [[W7:%.+]] = vector.insert [[F7]], [[W6]]
+
+// CHECK: [[V2:%.+]] = vector.extract_strided_slice [[V]] {offsets = [8], sizes = [1], strides = [1]} : vector<9xf8E4M3FN> to vector<1xf8E4M3FN>
+// CHECK: [[F8:%.+]] = amdgpu.ext_packed_fp8 [[V2]][0]
+// CHECK: [[W8:%.+]] = vector.insert [[F8]], [[W7]]
+// CHECK: return [[W8]]
+func.func @vector_ext_long(%v: vector<9xf8E4M3FN>) -> vector<9xf32> {
+ %w = arith.extf %v : vector<9xf8E4M3FN> to vector<9xf32>
+ return %w : vector<9xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @scalar_trunc
+// CHECK-SAME: ([[V:%.+]]: f16)
+// CHECK: [[FLOAT:%.+]] = arith.extf [[V]] : f16 to f32
+// CHECK: [[TRUNCV:%.+]] = amdgpu.packed_trunc_2xfp8 [[FLOAT]], undef into undef[word 0] : f32 to vector<4xf8E5M2>
+// CHECK: [[W:%.+]] = vector.extract [[TRUNCV]][0] : f8E5M2 from vector<4xf8E5M2>
+// CHECK: return [[W]] : f8E5M2
+func.func @scalar_trunc(%v: f16) -> f8E5M2 {
+ %w = arith.truncf %v : f16 to f8E5M2
+ return %w : f8E5M2
+}
+
+// No 0-D test because arith.truncf hasn't been extended to support it.
+
+// -----
+
+// CHECK-LABEL: func.func @vector_trunc_short
+// CHECK-SAME: ([[V:%.+]]: vector<2xf64>) -> vector<2xf8E5M2> {
+// CHECK: [[V0:%.+]] = vector.extract [[V]][0]
+// CHECK: [[F0:%.+]] = arith.truncf [[V0]] : f64 to f32
+// CHECK: [[V1:%.+]] = vector.extract [[V]][1]
+// CHECK: [[F1:%.+]] = arith.truncf [[V1]] : f64 to f32
+// CHECK: [[W0:%.+]] = amdgpu.packed_trunc_2xfp8 [[F0]], [[F1]] into undef[word 0] : f32 to vector<4xf8E5M2>
+// CHECK: [[W:%.+]] = vector.extract_strided_slice [[W0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf8E5M2> to vector<2xf8E5M2>
+// CHECK: return [[W]] : vector<2xf8E5M2>
+func.func @vector_trunc_short(%v: vector<2xf64>) -> vector<2xf8E5M2> {
+ %w = arith.truncf %v : vector<2xf64> to vector<2xf8E5M2>
+ return %w : vector<2xf8E5M2>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @vector_trunc_long
+// CHECK-SAME: ([[V:%.+]]: vector<9xf32>)
+// CHECK: [[ZEROES:%.+]] = arith.constant dense<0.000000e+00> : vector<9xf8E4M3FN>
+// CHECK: [[T0:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into undef[word 0]
+// CHECK: [[T1:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into [[T0]][word 1]
+// CHECK: [[W0:%.+]] = vector.insert_strided_slice [[T1]], [[ZEROES]] {offsets = [0], strides = [1]}
+
+// CHECK: [[T2:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into undef[word 0]
+// CHECK: [[T3:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into [[T2]][word 1]
+// CHECK: [[W1:%.+]] = vector.insert_strided_slice [[T3]], [[W0]] {offsets = [4], strides = [1]}
+
+// CHECK: [[T4:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, undef into undef[word 0]
+// CHECK: [[T4_SHORT:%.+]] = vector.extract_strided_slice [[T4]] {offsets = [0], sizes = [1], strides = [1]}
+// CHECK: [[W:%.+]] = vector.insert_strided_slice [[T4_SHORT]], [[W1]] {offsets = [8], strides = [1]}
+// CHECK: return [[W]]
+func.func @vector_trunc_long(%v: vector<9xf32>) -> vector<9xf8E4M3FN> {
+ %w = arith.truncf %v : vector<9xf32> to vector<9xf8E4M3FN>
+ return %w : vector<9xf8E4M3FN>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @vector_trunc_long_2d
+// CHECK-SAME: ([[V:%.+]]: vector<1x9xf32>)
+// CHECK: [[ZEROES:%.+]] = arith.constant dense<0.000000e+00> : vector<9xf8E4M3FN>
+// CHECK: [[T0:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into undef[word 0]
+// CHECK: [[T1:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into [[T0]][word 1]
+// CHECK: [[W0:%.+]] = vector.insert_strided_slice [[T1]], [[ZEROES]] {offsets = [0], strides = [1]}
+
+// CHECK: [[T2:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into undef[word 0]
+// CHECK: [[T3:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, %{{.+}} into [[T2]][word 1]
+// CHECK: [[W1:%.+]] = vector.insert_strided_slice [[T3]], [[W0]] {offsets = [4], strides = [1]}
+
+// CHECK: [[T4:%.+]] = amdgpu.packed_trunc_2xfp8 %{{.+}}, undef into undef[word 0]
+// CHECK: [[T4_SHORT:%.+]] = vector.extract_strided_slice [[T4]] {offsets = [0], sizes = [1], strides = [1]}
+// CHECK: [[W:%.+]] = vector.insert_strided_slice [[T4_SHORT]], [[W1]] {offsets = [8], strides = [1]}
+// CHECK: [[RE:%.+]] = vector.shape_cast [[W]] : vector<9xf8E4M3FN> to vector<1x9xf8E4M3FN>
+// CHECK: return [[RE]]
+func.func @vector_trunc_long_2d(%v: vector<1x9xf32>) -> vector<1x9xf8E4M3FN> {
+ %w = arith.truncf %v : vector<1x9xf32> to vector<1x9xf8E4M3FN>
+ return %w : vector<1x9xf8E4M3FN>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @vector_ext_long_2d
+// CHECK-SAME: ([[V:%.+]]: vector<1x9xf8E4M3FN>)
+// CHECK: [[CAST:%.+]] = vector.shape_cast [[V]] : vector<1x9xf8E4M3FN> to vector<9xf8E4M3FN>
+// CHECK: [[V0:%.+]] = vector.extract_strided_slice [[CAST]] {offsets = [0], sizes = [4], strides = [1]}
+// CHECK: [[F0:%.+]] = amdgpu.ext_packed_fp8 [[V0]][0]
+// CHECK: [[W0:%.+]] = vector.insert [[F0]]
+// CHECK: [[F1:%.+]] = amdgpu.ext_packed_fp8 [[V0]][1]
+// CHECK: [[W1:%.+]] = vector.insert [[F1]], [[W0]]
+// CHECK: [[F2:%.+]] = amdgpu.ext_packed_fp8 [[V0]][2]
+// CHECK: [[W2:%.+]] = vector.insert [[F2]], [[W1]]
+// CHECK: [[F3:%.+]] = amdgpu.ext_packed_fp8 [[V0]][3]
+// CHECK: [[W3:%.+]] = vector.insert [[F3]], [[W2]]
+
+// CHECK: [[V1:%.+]] = vector.extract_strided_slice [[CAST]] {offsets = [4], sizes = [4], strides = [1]} : vector<9xf8E4M3FN> to vector<4xf8E4M3FN>
+// CHECK: [[F4:%.+]] = amdgpu.ext_packed_fp8 [[V1]][0]
+// CHECK: [[W4:%.+]] = vector.insert [[F4]], [[W3]]
+// CHECK: [[F5:%.+]] = amdgpu.ext_packed_fp8 [[V1]][1]
+// CHECK: [[W5:%.+]] = vector.insert [[F5]], [[W4]]
+// CHECK: [[F6:%.+]] = amdgpu.ext_packed_fp8 [[V1]][2]
+// CHECK: [[W6:%.+]] = vector.insert [[F6]], [[W5]]
+// CHECK: [[F7:%.+]] = amdgpu.ext_packed_fp8 [[V1]][3]
+// CHECK: [[W7:%.+]] = vector.insert [[F7]], [[W6]]
+
+// CHECK: [[V2:%.+]] = vector.extract_strided_slice [[CAST]] {offsets = [8], sizes = [1], strides = [1]} : vector<9xf8E4M3FN> to vector<1xf8E4M3FN>
+// CHECK: [[F8:%.+]] = amdgpu.ext_packed_fp8 [[V2]][0]
+// CHECK: [[W8:%.+]] = vector.insert [[F8]], [[W7]]
+// CHECK: [[CAST:%.+]] = vector.shape_cast [[W8]] : vector<9xf32> to vector<1x9xf32>
+// CHECK: return [[CAST]]
+func.func @vector_ext_long_2d(%v: vector<1x9xf8E4M3FN>) -> vector<1x9xf32> {
+ %w = arith.extf %v : vector<1x9xf8E4M3FN> to vector<1x9xf32>
+ return %w : vector<1x9xf32>
+}
More information about the Mlir-commits
mailing list