[Mlir-commits] [mlir] [emitC]Pass in `mlir-opt` to wrap a func in class (PR #141158)
Mircea Trofin
llvmlistbot at llvm.org
Fri Jun 13 19:57:30 PDT 2025
Valentin Clement =?utf-8?b?KOODkOODrOODsw=?=,Jaddyen <ajaden at google.com>,Jaddyen
<ajaden at google.com>,Jaddyen <ajaden at google.com>,Jaddyen <ajaden at google.com>,Jaddyen
<ajaden at google.com>,Jaddyen <ajaden at google.com>,Jaden Angella
<141196890+Jaddyen at users.noreply.github.com>,Jaden Angella
<141196890+Jaddyen at users.noreply.github.com>
Message-ID:
In-Reply-To: <llvm.org/llvm/llvm-project/pull/141158 at github.com>
================
@@ -1572,4 +1572,110 @@ def EmitC_SwitchOp : EmitC_Op<"switch", [RecursiveMemoryEffects,
let hasVerifier = 1;
}
+def EmitC_ClassOp
+ : EmitC_Op<"class", [AutomaticAllocationScope, IsolatedFromAbove,
+ OpAsmOpInterface, SymbolTable,
+ Symbol]#GraphRegionNoTerminator.traits> {
+ let summary =
+ "Represents a C++ class definition, encapsulating fields and methods.";
+
+ let description = [{
+ The `emitc.class` operation defines a C++ class, acting as a container
+ for its data fields (`emitc.field`) and methods (`emitc.func`).
+ It creates a distinct scope, isolating its contents from the surrounding
+ MLIR region, similar to how C++ classes encapsulate their internals.
+ All the class memebrs need to be default initalizable.
+
+ Example:
+ ```mlir
+ emitc.class @MymainClass {
+ emitc.field @another_feature : !emitc.array<1xf32> = {tf_saved_model.index_path = ["another_feature"]}
+ emitc.field @some_feature : !emitc.array<1xf32> = {tf_saved_model.index_path = ["some_feature"]}
+ emitc.field @output_0 : !emitc.array<1xf32> = {tf_saved_model.index_path = ["output_0"]}
----------------
mtrofin wrote:
don't use tensorflow stuff in the example. Also, I think the emitc.class / emitc.field stuff can be dissociated from the attributes stuff. *if* that's present, we'll generate the reflection stuff.
i.e. I think all we want to do right now is make the args of the function into fields, and copy over the args' attributes. @jpienaar - we're OK to let mlir-translate know how to handle "reflection" by generating a dictionary and all that, right?
https://github.com/llvm/llvm-project/pull/141158
More information about the Mlir-commits
mailing list