[Mlir-commits] [mlir] [mlir][linalg] Update pack and unpack documentation (PR #143903)
Christopher McGirr
llvmlistbot at llvm.org
Thu Jun 12 07:13:15 PDT 2025
https://github.com/chrsmcgrr created https://github.com/llvm/llvm-project/pull/143903
* Clarified the `inner_dim_pos` attribute in the case of high dimensionality tensors.
* Added a 5D examples to show-case the use-cases that triggered this updated.
* Added a reminder for linalg.unpack that number of elements are not required to be the same between input/output due to padding being dropped.
I encountered some odd variations of `linalg.pack` and `linalg.unpack` while working on some TFLite models and the definition in the documentation did not match what I saw pass in IR verification.
The following changes reconcile those differences.
>From ec054a3ca1f5a25996d793a15a0569bb82095600 Mon Sep 17 00:00:00 2001
From: Christopher McGirr <mcgirr at roofline.ai>
Date: Thu, 12 Jun 2025 08:12:38 +0000
Subject: [PATCH] [mlir][linalg] Update pack and unpack documentation
* Clarified the `inner_dim_pos` attribute in the case of high
dimensionality tensors.
* Added a 5D examples to show-case the use-cases that triggered this
updated.
* Added a reminder for linalg.unpack that number of elements are not
required to be the same between input/output due to padding being
dropped.
I encountered some odd variations of `linalg.pack` and
`linalg.unpack` while working on some TFLite models and the
definition in the documentation did not match what I saw pass in IR
verification.
The following changes reconcile those differences.
Signed-off-by: Christopher McGirr <mcgirr at roofline.ai>
---
.../Dialect/Linalg/IR/LinalgRelayoutOps.td | 51 +++++++++++----
mlir/test/Dialect/Linalg/invalid.mlir | 11 ++++
mlir/test/Dialect/Linalg/named-ops.mlir | 63 +++++++++++++++++++
3 files changed, 114 insertions(+), 11 deletions(-)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgRelayoutOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgRelayoutOps.td
index 1e48a5e3a20ee..fef1900be62ea 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgRelayoutOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgRelayoutOps.td
@@ -94,11 +94,13 @@ def Linalg_PackOp : Linalg_RelayoutOp<"pack", [
and optionally transposes the tiled source tensor dimensions.
`inner_dims_pos` (mandatory) specifies `k` source tensor dimensions that are
- being tiled, where `0 < k <= n`. The order of the dimensions matters:
- - The tiled dimensions (of size `inner_tiles`) are added to the end of the result
- tensor in the order in which they appear in `inner_dims_pos`.
+ being tiled, where `0 < k <= n`.
- `inner_dims_pos[i]` specifies the source tensor dimension tiled by
- `inner_tiles[i]`.
+ `inner_tiles[i]` where `0 <= i < k`.
+ - the resulting tiled source dimension maps to an outer dimension of the
+ packed tensor in the order the non-tiled dimension appeared in the source
+ tensor, i.e. `shape(result)[inner_dims_pos[i]]` is equal to
+ `shape(source)[inner_dims_pos[i]] / inner_tiles[i]`.
`inner_tiles` (mandatory) specifies `k` tile sizes. These tile sizes
correspond to the least significant ("inner") result tensor dimension sizes,
@@ -117,6 +119,16 @@ def Linalg_PackOp : Linalg_RelayoutOp<"pack", [
into %dest : tensor<128x256xf32> -> tensor<16x8 x 8x32 xf32>
// \ / \ /
// outer dims inner dims
+ // CHW to CHWhw
+ %0 = linalg.pack %source inner_dims_pos = [2, 1] inner_tiles = [4, 2]
+ into %dest : tensor<1x8x16xf32> -> tensor<1x2x4 x 4x2 xf32>
+ // \ / \ /
+ // outer dims inner dims
+ // HCW to HCWhw
+ %0 = linalg.pack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2]
+ into %dest : tensor<20x1x12xf32> -> tensor<10x1x3 x 4x2xf32>
+ // \ / \ /
+ // Outer Dims: 10x1x3 Inner Dims: 4x2
```
`outer_dims_perm` (optional) specifies a permutation for the outer
@@ -246,12 +258,14 @@ def Linalg_UnPackOp : Linalg_RelayoutOp<"unpack"> {
The "unpack" operation converts a source tensor of rank `n` with a tiled and
packed layout to a result tensor of rank `n - k`.
- `inner_dims_pos` (mandatory) specifies `k` source tensor dimensions with
- which the last `k` source tensor dimensions are combined, where
- `0 < k <= n/2`. Each `inner_dims_pos` element must be `>= 0` and `< n - k`.
- The order of the dimensions in `inner_dims_pos` matters: dimension
- `inner_dims_pos[i]` is combined with dimension `n - k + i` (assuming that
- `outer_dims_perm` is not specified).
+ `inner_dims_pos` (mandatory) specifies `k` result tensor dimensions that
+ were tiled with the `inner_tiles` to create the packed source tensor. The
+ source tensor dimensions can be combined given `inner_dims_pos` as follows:
+ the inner tile `shape(source)[n-k+i]` is combined with
+ `shape(source)[inner_dims_pos[i]]` where `0 <= i < k` and stored at
+ `shape(result)[inner_dims_pos[i]]`. The remaining dimensions are
+ `shape(result)[j] = shape(source)[j]` where `0 <= j < n-k` and `j` is not in
+ the set of `inner_dims_pos` indices.
`inner_tiles` (mandatory) specifies `k` tile sizes. These tile sizes
correspond to the least significant ("inner") source tensor dimension sizes.
@@ -266,7 +280,11 @@ def Linalg_UnPackOp : Linalg_RelayoutOp<"unpack"> {
dimensions. If specified, it must have `n - k` elements. If specified, this
permutation is applied before combining any dimensions.
- Example:
+ Note, the amount of elements in the source (packed tensor) and the result
+ (unpacked) can be unequal, i.e. `SizeOf(source) >= SizeOf(result)`. As
+ the unpack operation may drop any padding introduced by the pack operation.
+
+ Examples:
```mlir
// NCnc to NC:
@@ -277,6 +295,17 @@ def Linalg_UnPackOp : Linalg_RelayoutOp<"unpack"> {
%0 = linalg.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1]
inner_tiles = [8, 32] into %dest
: tensor<8x16x8x32xf32> -> tensor<128x256xf32>
+
+ // CHW to CHWhw:
+ %0 = linalg.unpack %source inner_dims_pos = [2, 1] inner_tiles = [4, 2]
+ into %dest : tensor<1x3x2x4x2xf32> -> tensor<1x5x7xf32>
+ // / \
+ // Outer Dims: 1x3x2 Inner Dims: 4x2
+ // HCW to HCWhw
+ %0 = linalg.unpack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2]
+ into %dest : tensor<10x1x3 x 4x2xf32> -> tensor<20x1x12xf32>
+ // / \
+ // Outer Dims: 10x1x3 Inner Dims: 4x2
```
}];
let arguments = (ins AnyRankedTensor:$source,
diff --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir
index c0c5f785e856b..fcca6dfadf723 100644
--- a/mlir/test/Dialect/Linalg/invalid.mlir
+++ b/mlir/test/Dialect/Linalg/invalid.mlir
@@ -1824,6 +1824,17 @@ func.func @unpack_invalid_outer_dims_perm(%source: tensor<128x256xf32>, %dest: t
// -----
+// Here we have the source tensor being tiled as: `source[1] / 32` and `source[0] / 16` but the inner_dims_pos does not imply
+// a transpose of the outer dimensions for the result tensor. The tiled dimensions appear in the result tensor in the order
+// they appear in the source tensor, i.e. 16x4x32x16
+func.func @pack_invalid_result_shape(%input: tensor<256x128xf32>, %output: tensor<4x16x32x16xf32>) -> tensor<4x16x32x16xf32> {
+ // expected-error at +1 {{the shape of output is not large enough to hold the packed data. Expected at least 'tensor<16x4x32x16xf32>', got 'tensor<4x16x32x16xf32>'}}
+ %0 = linalg.pack %input inner_dims_pos = [1, 0] inner_tiles = [32, 16] into %output : tensor<256x128xf32> -> tensor<4x16x32x16xf32>
+ return %0 : tensor<4x16x32x16xf32>
+}
+
+// -----
+
func.func @pack_invalid(%input: tensor<256x128xf32>, %output: tensor<8x8x32x16xf32>) -> tensor<8x8x32x16xf32> {
// expected-error at +1 {{the shape of output is not large enough to hold the packed data. Expected at least 'tensor<8x8x16x32xf32>', got 'tensor<8x8x32x16xf32>'}}
%0 = linalg.pack %input inner_dims_pos = [1, 0] inner_tiles = [16, 32] into %output : tensor<256x128xf32> -> tensor<8x8x32x16xf32>
diff --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index 470bc1c78640c..b21b234bc7841 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -2771,6 +2771,69 @@ func.func @pad_and_pack_partially_dynamic(%source: tensor<?x?xf32>, %dest: tenso
// -----
+func.func @pack_descending_inner_dims_with_padding(%source: tensor<1x5x7xf32>, %dest: tensor<1x3x2x4x2xf32>, %pad: f32) -> tensor<1x3x2x4x2xf32> {
+ %0 = linalg.pack %source padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [4, 2] into %dest : tensor<1x5x7xf32> -> tensor<1x3x2x4x2xf32>
+ return %0 : tensor<1x3x2x4x2xf32>
+}
+
+// CHECK-LABEL: func.func @pack_descending_inner_dims_with_padding(
+// CHECK-SAME: %[[SOURCE:.*]]: tensor<1x5x7xf32>,
+// CHECK-SAME: %[[DEST:.*]]: tensor<1x3x2x4x2xf32>,
+// CHECK-SAME: %[[PAD:.*]]: f32)
+// CHECK: %{{.*}} = linalg.pack
+// CHECK-SAME: inner_dims_pos = [2, 1]
+// CHECK-SAME: inner_tiles = [4, 2]
+// CHECK-SAME: into %[[DEST]] : tensor<1x5x7xf32> -> tensor<1x3x2x4x2xf32>
+
+// -----
+
+// The function suffix "with_padding" refers to the padding that was introduced by the pack operation. But here
+// we are dropping the padding. Creating a tensor with less elements than what we started with.
+func.func @unpack_descending_inner_dims_with_padding(%source: tensor<1x3x2x4x2xf32>, %dest: tensor<1x5x7xf32>) -> tensor<1x5x7xf32> {
+ %0 = linalg.unpack %source inner_dims_pos = [2, 1] inner_tiles = [4, 2] into %dest : tensor<1x3x2x4x2xf32> -> tensor<1x5x7xf32>
+ return %0 : tensor<1x5x7xf32>
+}
+
+// CHECK-LABEL: func.func @unpack_descending_inner_dims_with_padding(
+// CHECK-SAME: %[[SOURCE:.*]]: tensor<1x3x2x4x2xf32>,
+// CHECK-SAME: %[[DEST:.*]]: tensor<1x5x7xf32>)
+// CHECK: %{{.*}} = linalg.unpack
+// CHECK-SAME: inner_dims_pos = [2, 1]
+// CHECK-SAME: inner_tiles = [4, 2]
+// CHECK-SAME: into %[[DEST]] : tensor<1x3x2x4x2xf32> -> tensor<1x5x7xf32>
+
+// -----
+
+func.func @pack_non_adjacent_inner_dims(%source: tensor<20x1x12xf32>, %dest: tensor<10x1x3x4x2xf32>) -> tensor<10x1x3x4x2xf32> {
+ %0 = linalg.pack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2] into %dest : tensor<20x1x12xf32> -> tensor<10x1x3x4x2xf32>
+ return %0 : tensor<10x1x3x4x2xf32>
+}
+
+// CHECK-LABEL: func.func @pack_non_adjacent_inner_dims(
+// CHECK-SAME: %[[SOURCE:.*]]: tensor<20x1x12xf32>,
+// CHECK-SAME: %[[DEST:.*]]: tensor<10x1x3x4x2xf32>)
+// CHECK: %{{.*}} = linalg.pack
+// CHECK-SAME: inner_dims_pos = [2, 0]
+// CHECK-SAME: inner_tiles = [4, 2]
+// CHECK-SAME: into %[[DEST]] : tensor<20x1x12xf32> -> tensor<10x1x3x4x2xf32>
+
+// -----
+
+func.func @unpack_non_adjacent_inner_dims(%source: tensor<10x1x3x4x2xf32>, %dest: tensor<20x1x12xf32>) -> tensor<20x1x12xf32> {
+ %0 = linalg.unpack %source inner_dims_pos = [2, 0] inner_tiles = [4, 2] into %dest : tensor<10x1x3x4x2xf32> -> tensor<20x1x12xf32>
+ return %0 : tensor<20x1x12xf32>
+}
+
+// CHECK-LABEL: func.func @unpack_non_adjacent_inner_dims(
+// CHECK-SAME: %[[SOURCE:.*]]: tensor<10x1x3x4x2xf32>,
+// CHECK-SAME: %[[DEST:.*]]: tensor<20x1x12xf32>)
+// CHECK: %{{.*}} = linalg.unpack
+// CHECK-SAME: inner_dims_pos = [2, 0]
+// CHECK-SAME: inner_tiles = [4, 2]
+// CHECK-SAME: into %[[DEST]] : tensor<10x1x3x4x2xf32> -> tensor<20x1x12xf32>
+
+// -----
+
func.func @unpack_fully_dynamic(%source: tensor<?x?x?x?xf32>, %dest: tensor<?x?xf32>, %tile_n : index, %tile_m : index) -> tensor<?x?xf32> {
%0 = linalg.unpack %source inner_dims_pos = [0, 1] inner_tiles = [%tile_n, %tile_m] into %dest : tensor<?x?x?x?xf32> -> tensor<?x?xf32>
return %0 : tensor<?x?xf32>
More information about the Mlir-commits
mailing list