[Mlir-commits] [mlir] Introduce `arith.scaling_extf` and `arith.scaling_truncf` (PR #141965)
Umang Yadav
llvmlistbot at llvm.org
Mon Jun 2 08:10:28 PDT 2025
================
@@ -1215,6 +1215,59 @@ def Arith_ExtFOp : Arith_FToFCastOp<"extf", [DeclareOpInterfaceMethods<ArithFast
attr-dict `:` type($in) `to` type($out) }];
}
+//===----------------------------------------------------------------------===//
+// Scaling ExtFOp
+//===----------------------------------------------------------------------===//
+def Arith_ScalingExtFOp
+ : Arith_Op<
+ "scaling_extf", [Pure, SameInputOutputTensorDims,
+ DeclareOpInterfaceMethods<ArithFastMathInterface>,
+ DeclareOpInterfaceMethods<CastOpInterface>]>,
+ Arguments<(ins FloatLike:$in, FloatLike:$scale,
+ OptionalAttr<Arith_FastMathAttr>:$fastmath)>,
+ Results<(outs FloatLike:$out)> {
+ let summary =
+ "Upcasts quantized floats using provided scales values following OCP MXFP Spec";
+ let description = [{
+ This operation upcasts quantized floating-point values using provided scale
+ values. It expects both scales and the input operand to be of the same shape,
+ making the operation elementwise. Scales are usually calculated per block
+ following the OCP MXFP spec as described in https://arxiv.org/abs/2310.10537.
+
+ If scales are calculated per block where blockSize != 1, then scales may
+ require broadcasting to make this operation elementwise. For example, let's
+ say the input is of shape `<dim1 x dim2 x ... dimN>`. Given blockSize != 1 and
+ assuming quantization happens on the last axis, the input can be reshaped to
+ `<dim1 x dim2 x ... (dimN/blockSize) x blockSize>`. Scales will be calculated
+ per block on the last axis. Therefore, scales will be of shape
+ `<dim1 x dim2 x ... (dimN/blockSize) x 1>`. Scales could also be of some other
+ shape as long as it is broadcast compatible with the input, e.g.,
+ `<1 x 1 x ... (dimN/blockSize) x 1>`.
+
+ In this example, before calling into `arith.scaling_extf`, scales must be
+ broadcasted to `<dim1 x dim2 x dim3 ... (dimN/blockSize) x blockSize>`. Note
+ that there could be multiple quantization axes. Internally,
+ `arith.scaling_extf` would perform the following:
+
+ ```
+ resultTy = get_type(result)
+ scaleTy = get_type(scale)
+ inputTy = get_type(input)
+ assert(scaleTy.shape() == inputTy.shape() == resultTy.shape())
+ scale.exponent = arith.truncf(scale) : scaleTy to f8E8M0
+ scale.extf = arith.extf(sale.bcast) : f8E8M0 to resultTy
----------------
umangyadav wrote:
Done
https://github.com/llvm/llvm-project/pull/141965
More information about the Mlir-commits
mailing list