[Mlir-commits] [mlir] [MLIR] Support non-atomic RMW option for emulated vector stores (PR #124887)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Jan 29 01:13:37 PST 2025
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
@llvm/pr-subscribers-mlir-memref
Author: Alan Li (lialan)
<details>
<summary>Changes</summary>
This patch is a followup of the previous one: #<!-- -->115922, It adds an option to turn on emitting non-atomic rmw code sequence instead of atomic rmw.
---
Full diff: https://github.com/llvm/llvm-project/pull/124887.diff
4 Files Affected:
- (modified) mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h (+4-2)
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp (+58-6)
- (added) mlir/test/Dialect/Vector/vector-emulate-narrow-type-unaligned-non-atomic.mlir (+119)
- (modified) mlir/test/lib/Dialect/MemRef/TestEmulateNarrowType.cpp (+7-1)
``````````diff
diff --git a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
index a59f06f3c1ef1b..43478aacb50a14 100644
--- a/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
+++ b/mlir/include/mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h
@@ -364,10 +364,12 @@ void populateVectorMaskMaterializationPatterns(RewritePatternSet &patterns,
PatternBenefit benefit = 1);
/// Appends patterns for emulating vector operations over narrow types with ops
-/// over wider types.
+/// over wider types. The `useAtomicWrites` indicates whether to use
+/// op `memref.generic_atomic_rmw` to perform atomic subbyte storing, or just a
+/// rmw sequence otherwise.
void populateVectorNarrowTypeEmulationPatterns(
const arith::NarrowTypeEmulationConverter &typeConverter,
- RewritePatternSet &patterns);
+ RewritePatternSet &patterns, bool useAtomicWrites = true);
/// Rewrite a vector `bitcast(trunci)` to use a more efficient sequence of
/// vector operations comprising `shuffle` and `bitwise` ops.
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
index 7ca88f1e0a0df9..c848d3c0ca98aa 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
@@ -363,6 +363,30 @@ static void atomicStore(OpBuilder &builder, Location loc,
builder.create<memref::AtomicYieldOp>(loc, scalarMaskedValue);
}
+/// Generate a non-atomic read-modify-write sequence for subbyte storing.
+/// It has similar logic to `atomicStore`, but without the atomicity.
+static void rmwStore(OpBuilder &builder, Location loc,
+ MemRefValue linearizedMemref, Value linearizedIndex,
+ VectorValue valueToStore, Value mask) {
+ assert(valueToStore.getType().getRank() == 1 && "expected 1-D vector");
+
+ // Load the original value from memory, and cast it to the original element
+ // type.
+ auto oneElemVecType =
+ VectorType::get({1}, linearizedMemref.getType().getElementType());
+ Value origVecValue = builder.create<vector::LoadOp>(
+ loc, oneElemVecType, linearizedMemref, ValueRange{linearizedIndex});
+ origVecValue = builder.create<vector::BitCastOp>(loc, valueToStore.getType(),
+ origVecValue);
+
+ // Construct the final masked value and yield it.
+ Value maskedValue =
+ downcastSelectAndUpcast(builder, loc, valueToStore.getType(),
+ oneElemVecType, mask, valueToStore, origVecValue);
+ builder.create<vector::StoreOp>(loc, maskedValue, linearizedMemref,
+ linearizedIndex);
+}
+
/// Extract `sliceNumElements` from source `vector` at `extractOffset`,
/// and insert it into an empty vector at `insertOffset`.
/// Inputs:
@@ -405,6 +429,10 @@ namespace {
struct ConvertVectorStore final : OpConversionPattern<vector::StoreOp> {
using OpConversionPattern::OpConversionPattern;
+ ConvertVectorStore(MLIRContext *context, bool useAtomicWrites)
+ : OpConversionPattern<vector::StoreOp>(context),
+ useAtomicWrites_(useAtomicWrites) {}
+
LogicalResult
matchAndRewrite(vector::StoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
@@ -555,8 +583,8 @@ struct ConvertVectorStore final : OpConversionPattern<vector::StoreOp> {
extractSliceIntoByte(rewriter, loc, valueToStore, 0,
frontSubWidthStoreElem, *foldedNumFrontPadElems);
- atomicStore(rewriter, loc, memrefBase, currentDestIndex,
- cast<VectorValue>(value), frontMask.getResult());
+ subEmulatedWidthStore(rewriter, loc, memrefBase, currentDestIndex,
+ cast<VectorValue>(value), frontMask.getResult());
}
if (currentSourceIndex >= origElements) {
@@ -611,13 +639,31 @@ struct ConvertVectorStore final : OpConversionPattern<vector::StoreOp> {
auto backMask = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(subWidthStoreMaskType, maskValues));
- atomicStore(rewriter, loc, memrefBase, currentDestIndex,
- cast<VectorValue>(subWidthStorePart), backMask.getResult());
+ subEmulatedWidthStore(rewriter, loc, memrefBase, currentDestIndex,
+ cast<VectorValue>(subWidthStorePart),
+ backMask.getResult());
}
rewriter.eraseOp(op);
return success();
}
+
+ /// Store a subbyte-sized value to memory, with a mask. Depending on the
+ /// configuration, it could be an atomic store or a non-atomic RMW sequence.
+ template <typename... Args>
+ void subEmulatedWidthStore(Args &&...args) const {
+ static_assert(
+ std::is_same_v<decltype(atomicStore), decltype(rmwStore)> &&
+ "`atomicStore` and `rmwStore` must have same signature, as per "
+ "the design to keep the code clean, which one to call is "
+ "determined by the `useAtomicWrites` flag.");
+ std::function<decltype(atomicStore)> storeFunc =
+ useAtomicWrites_ ? atomicStore : rmwStore;
+ storeFunc(std::forward<Args>(args)...);
+ }
+
+private:
+ const bool useAtomicWrites_;
};
//===----------------------------------------------------------------------===//
@@ -1930,12 +1976,18 @@ struct RewriteVectorTranspose : OpRewritePattern<vector::TransposeOp> {
void vector::populateVectorNarrowTypeEmulationPatterns(
const arith::NarrowTypeEmulationConverter &typeConverter,
- RewritePatternSet &patterns) {
+ RewritePatternSet &patterns, bool useAtomicWrites) {
// Populate `vector.*` conversion patterns.
- patterns.add<ConvertVectorLoad, ConvertVectorMaskedLoad, ConvertVectorStore,
+ // TODO: #119553 support atomicity
+ patterns.add<ConvertVectorLoad, ConvertVectorMaskedLoad,
ConvertVectorMaskedStore, ConvertVectorTransferRead>(
typeConverter, patterns.getContext());
+
+ // Populate `vector.*` store conversion patterns. The caller can choose
+ // to avoid emitting atomic operations and reduce it to load-modify-write
+ // sequence for stores if it is known there are no thread contentions.
+ patterns.insert<ConvertVectorStore>(patterns.getContext(), useAtomicWrites);
}
void vector::populateVectorNarrowTypeRewritePatterns(
diff --git a/mlir/test/Dialect/Vector/vector-emulate-narrow-type-unaligned-non-atomic.mlir b/mlir/test/Dialect/Vector/vector-emulate-narrow-type-unaligned-non-atomic.mlir
new file mode 100644
index 00000000000000..79f8869d043ee3
--- /dev/null
+++ b/mlir/test/Dialect/Vector/vector-emulate-narrow-type-unaligned-non-atomic.mlir
@@ -0,0 +1,119 @@
+// RUN: mlir-opt --test-emulate-narrow-int="arith-compute-bitwidth=1 memref-load-bitwidth=8 atomic-store=false" --cse --split-input-file %s | FileCheck %s
+
+// TODO: remove memref.alloc() in the tests to eliminate noises.
+// memref.alloc exists here because sub-byte vector data types such as i2
+// are currently not supported as input arguments.
+
+func.func @vector_store_i2_const_index_two_rmw(%arg0: vector<3xi2>) {
+ %0 = memref.alloc() : memref<3x3xi2>
+ %c0 = arith.constant 0 : index
+ %c2 = arith.constant 2 : index
+ vector.store %arg0, %0[%c2, %c0] :memref<3x3xi2>, vector<3xi2>
+ return
+}
+// Load from bit [12:18), byte [1:2] of total 3 bytes, both bytes needs rmw.
+
+// CHECK: func @vector_store_i2_const_index_two_rmw(
+// CHECK-SAME: %[[ARG0:.+]]: vector<3xi2>)
+// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<3xi8>
+// CHECK: %[[C1:.+]] = arith.constant 1 : index
+
+// Part 1 RMW sequence
+// CHECK: %[[CST:.+]] = arith.constant dense<[false, false, true, true]>
+// CHECK: %[[CST0:.+]] = arith.constant dense<0> : vector<4xi2>
+// CHECK: %[[EXTRACT:.+]] = vector.extract_strided_slice %[[ARG0]]
+// CHECK-SAME: {offsets = [0], sizes = [2], strides = [1]} : vector<3xi2> to vector<2xi2>
+// CHECK: %[[INSERT:.+]] = vector.insert_strided_slice %[[EXTRACT]], %[[CST0]]
+// CHECK-SAME: {offsets = [2], strides = [1]} : vector<2xi2> into vector<4xi2>
+// CHECK: %[[LOAD:.+]] = vector.load
+// CHECK: %[[UPCAST:.+]] = vector.bitcast %[[LOAD]] : vector<1xi8> to vector<4xi2>
+// CHECK: %[[SELECT:.+]] = arith.select %[[CST]], %[[INSERT]], %[[UPCAST]]
+// CHECK: %[[DOWNCAST:.+]] = vector.bitcast %[[SELECT]]
+// CHECK: vector.store %[[DOWNCAST]], %[[ALLOC]][%[[C1]]]
+
+// Part 2 RMW sequence
+// CHECK: %[[OFFSET:.+]] = arith.addi %[[C1]], %[[C1]] : index
+// CHECK: %[[EXTRACT2:.+]] = vector.extract_strided_slice %[[ARG0]]
+// CHECK-SAME: {offsets = [2], sizes = [1], strides = [1]} : vector<3xi2> to vector<1xi2>
+// CHECK: %[[INSERT2:.+]] = vector.insert_strided_slice %[[EXTRACT2]], %[[CST0]]
+// CHECK-SAME: {offsets = [0], strides = [1]} : vector<1xi2> into vector<4xi2>
+// CHECK: %[[CST1:.+]] = arith.constant dense<[true, false, false, false]> : vector<4xi1>
+// CHECK: %[[LOAD2:.+]] = vector.load
+// CHECK: %[[UPCAST2:.+]] = vector.bitcast %[[LOAD2]] : vector<1xi8> to vector<4xi2>
+// CHECK: %[[SELECT2:.+]] = arith.select %[[CST1]], %[[INSERT2]], %[[UPCAST2]]
+// CHECK: %[[DOWNCAST2:.+]] = vector.bitcast %[[SELECT2]]
+// CHECK: vector.store %[[DOWNCAST2]], %[[ALLOC]][%[[OFFSET]]]
+
+
+// -----
+
+func.func @vector_store_i2_rmw(%arg0: vector<7xi2>) {
+ %0 = memref.alloc() : memref<3x7xi2>
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ vector.store %arg0, %0[%c1, %c0] :memref<3x7xi2>, vector<7xi2>
+ return
+}
+
+// CHECK: func @vector_store_i2_rmw(
+// CHECK-SAME: %[[ARG0:.+]]:
+// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<6xi8>
+// CHECK: %[[C1:.+]] = arith.constant 1 : index
+// CHECK: %[[CST:.+]] = arith.constant dense<[false, false, false, true]>
+// CHECK: %[[CST0:.+]] = arith.constant dense<0> : vector<4xi2>
+// CHECK: %[[EXTRACT:.+]] = vector.extract_strided_slice %[[ARG0]]
+// CHECK-SAME: {offsets = [0], sizes = [1], strides = [1]}
+// CHECK: %[[INSERT:.+]] = vector.insert_strided_slice %[[EXTRACT]], %[[CST0]]
+// CHECK-SAME: {offsets = [3], strides = [1]}
+// First sub-width RMW:
+// CHECK: %[[LOAD:.+]] = vector.load %[[ALLOC]][%[[C1]]]
+// CHECK: %[[UPCAST:.+]] = vector.bitcast %[[LOAD]] : vector<1xi8> to vector<4xi2>
+// CHECK: %[[SELECT:.+]] = arith.select %[[CST]], %[[INSERT]], %[[UPCAST]]
+// CHECK: %[[DOWNCAST:.+]] = vector.bitcast %[[SELECT]]
+// CHECK: vector.store %[[DOWNCAST]], %[[ALLOC]][%[[C1]]]
+
+// Full-width store:
+// CHECK: %[[INDEX:.+]] = arith.addi %[[C1]], %[[C1]]
+// CHECK: %[[EXTRACT1:.+]] = vector.extract_strided_slice %[[ARG0]]
+// CHECK-SAME: {offsets = [1], sizes = [4], strides = [1]}
+// CHECK: %[[BITCAST:.+]] = vector.bitcast %[[EXTRACT1]]
+// CHECK: vector.store %[[BITCAST]], %[[ALLOC]][%[[INDEX]]]
+
+// Second sub-width RMW:
+// CHECK: %[[INDEX2:.+]] = arith.addi %[[INDEX]], %[[C1]]
+// CHECK: %[[EXTRACT2:.+]] = vector.extract_strided_slice %[[ARG0]]
+// CHECK-SAME: {offsets = [5], sizes = [2], strides = [1]}
+// CHECK: %[[INSERT2:.+]] = vector.insert_strided_slice %[[EXTRACT2]]
+// CHECK-SAME: {offsets = [0], strides = [1]}
+// CHECK: %[[CST1:.+]] = arith.constant dense<[true, true, false, false]>
+// CHECK: %[[LOAD1:.+]] = vector.load %[[ALLOC]][%[[INDEX2]]]
+// CHECK: %[[UPCAST1:.+]] = vector.bitcast %[[LOAD1]]
+// CHECK: %[[SELECT1:.+]] = arith.select %[[CST1]], %[[INSERT2]], %[[UPCAST1]]
+// CHECK: %[[DOWNCAST1:.+]] = vector.bitcast %[[SELECT1]]
+// CHECK: vector.store %[[DOWNCAST1]], %[[ALLOC]][%[[INDEX2]]]
+
+// -----
+
+func.func @vector_store_i2_single_rmw(%arg0: vector<1xi2>) {
+ %0 = memref.alloc() : memref<4x1xi2>
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ vector.store %arg0, %0[%c1, %c0] :memref<4x1xi2>, vector<1xi2>
+ return
+}
+
+// in this test, only emit 1 rmw store
+// CHECK: func @vector_store_i2_single_rmw(
+// CHECK-SAME: %[[ARG0:.+]]: vector<1xi2>)
+// CHECK: %[[ALLOC:.+]] = memref.alloc() : memref<1xi8>
+// CHECK: %[[C0:.+]] = arith.constant 0 : index
+// CHECK: %[[CST:.+]] = arith.constant dense<[false, true, false, false]>
+// CHECK: %[[CST0:.+]] = arith.constant dense<0> : vector<4xi2>
+// CHECK: %[[INSERT:.+]] = vector.insert_strided_slice %[[ARG0]], %[[CST0]]
+// CHECK-SAME: {offsets = [1], strides = [1]} : vector<1xi2> into vector<4xi2>
+// CHECK: %[[LOAD:.+]] = vector.load %[[ALLOC]][%[[C0]]] : memref<1xi8>, vector<1xi8>
+// CHECK: %[[UPCAST:.+]] = vector.bitcast %[[LOAD]] : vector<1xi8> to vector<4xi2>
+// CHECK: %[[SELECT:.+]] = arith.select %[[CST]], %[[INSERT]], %[[UPCAST]]
+// CHECK: %[[DOWNCAST:.+]] = vector.bitcast %[[SELECT]]
+// CHECK: vector.store %[[DOWNCAST]], %[[ALLOC]][%[[C0]]]
+
diff --git a/mlir/test/lib/Dialect/MemRef/TestEmulateNarrowType.cpp b/mlir/test/lib/Dialect/MemRef/TestEmulateNarrowType.cpp
index 7401e470ed4f2c..9a3fac623fbd7d 100644
--- a/mlir/test/lib/Dialect/MemRef/TestEmulateNarrowType.cpp
+++ b/mlir/test/lib/Dialect/MemRef/TestEmulateNarrowType.cpp
@@ -99,7 +99,8 @@ struct TestEmulateNarrowTypePass
arith::populateArithNarrowTypeEmulationPatterns(typeConverter, patterns);
memref::populateMemRefNarrowTypeEmulationPatterns(typeConverter, patterns);
- vector::populateVectorNarrowTypeEmulationPatterns(typeConverter, patterns);
+ vector::populateVectorNarrowTypeEmulationPatterns(typeConverter, patterns,
+ atomicStore);
if (failed(applyPartialConversion(op, target, std::move(patterns))))
signalPassFailure();
@@ -118,6 +119,11 @@ struct TestEmulateNarrowTypePass
*this, "skip-memref-type-conversion",
llvm::cl::desc("disable memref type conversion (to test failures)"),
llvm::cl::init(false)};
+
+ Option<bool> atomicStore{
+ *this, "atomic-store",
+ llvm::cl::desc("use atomic store instead of load-modify-write"),
+ llvm::cl::init(true)};
};
} // namespace
``````````
</details>
https://github.com/llvm/llvm-project/pull/124887
More information about the Mlir-commits
mailing list