[Mlir-commits] [mlir] [mlir][tosa] Make TOSA MUL's Shift an Input (PR #121953)

Jack Frankland llvmlistbot at llvm.org
Mon Jan 27 06:48:25 PST 2025


https://github.com/FranklandJack updated https://github.com/llvm/llvm-project/pull/121953

>From ad05fa2fe8859d2476d0a2e8b7e91e3f831bd5fa Mon Sep 17 00:00:00 2001
From: TatWai Chong <tatwai.chong at arm.com>
Date: Tue, 6 Feb 2024 16:49:05 -0800
Subject: [PATCH] [mlir][tosa] Make TOSA MUL's Shift an Input

The TOSA-v1.0 specification makes the shift attribute of the MUL
(Hammard product) operator an input. Move the `shift` parameter of the
MUL operator in the MILR TOSA dialect from an attribute to an input and
update any lit tests appropriately.

Expand the verifier of the `tosa::MulOp` operation to check the various
constraints defined in the TOSA-v1.0 specification. Specifically, ensure
that all input operands (excluding the optional shift) are of the same
rank. This means that broadcasting tests which previously checked rank-0
tensors would be broadcast are no longer valid and are removed.

Signed-off-by: Jack Frankland <jack.frankland at arm.com>
---
 .../mlir/Dialect/Tosa/IR/TosaOpBase.td        |  4 +-
 mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h   | 51 ++++++-----
 mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td  | 91 ++++++++++++++-----
 .../Conversion/TosaToLinalg/TosaToLinalg.cpp  | 85 ++++++++++-------
 .../Dialect/Tosa/IR/TosaCanonicalizations.cpp | 15 ++-
 mlir/lib/Dialect/Tosa/IR/TosaOps.cpp          | 73 ++++++++++++++-
 .../Transforms/TosaDecomposeDepthwise.cpp     |  9 +-
 .../Tosa/Transforms/TosaMakeBroadcastable.cpp |  2 +-
 .../TosaToLinalg/tosa-to-linalg.mlir          | 12 ++-
 mlir/test/Dialect/Tosa/canonicalize.mlir      | 30 ++++--
 mlir/test/Dialect/Tosa/constant-op-fold.mlir  | 30 ++++--
 mlir/test/Dialect/Tosa/invalid.mlir           | 15 ++-
 mlir/test/Dialect/Tosa/ops.mlir               |  6 +-
 .../Tosa/tosa-decompose-depthwise.mlir        |  4 +-
 mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir | 17 ++--
 15 files changed, 321 insertions(+), 123 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
index 4975530a9588ca..29afd6c27302cc 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
@@ -239,9 +239,7 @@ class Tosa_ElementwiseOp<string mnemonic, list<Trait> traits = []> :
     Tosa_Op<mnemonic, !listconcat(traits, [
               DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
                                         ["inferReturnTypeComponents"]>,
-              ResultsBroadcastableShape,
               TosaElementwiseOperator,
-              SameOperandsAndResultRank,
               Pure])> {
   let assemblyFormat =
       "operands attr-dict `:` functional-type(operands, results)";
@@ -250,6 +248,8 @@ class Tosa_ElementwiseOp<string mnemonic, list<Trait> traits = []> :
 class Tosa_ElementwiseUnaryOp<string mnemonic, list<Trait> traits = []> :
     Tosa_ElementwiseOp<mnemonic, !listconcat(traits, [
               SameOperandsAndResultShape,
+              ResultsBroadcastableShape,
+              SameOperandsAndResultRank,
               SameOperandsAndResultElementType])> {}
 
 class Tosa_InferTensorTypeOp<string mnemonic, list<Trait> traits = []>
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
index e4f5d09064cd75..4d62a15110764e 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
@@ -14,6 +14,7 @@
 #define MLIR_DIALECT_TOSA_IR_TOSAOPS_H
 
 #include "mlir/Bytecode/BytecodeOpInterface.h"
+#include "mlir/Dialect/Quant/IR/QuantTypes.h"
 #include "mlir/Dialect/Traits.h"
 #include "mlir/IR/OpDefinition.h"
 #include "mlir/IR/OpImplementation.h"
@@ -28,6 +29,7 @@
 //===----------------------------------------------------------------------===//
 
 #include "mlir/Dialect/Tosa/IR/TosaOpsDialect.h.inc"
+#include "llvm/Support/LogicalResult.h"
 
 namespace mlir {
 class PatternRewriter;
@@ -53,34 +55,37 @@ class MulOperandsAndResultElementType
     : public TraitBase<ConcreteType, MulOperandsAndResultElementType> {
 public:
   static LogicalResult verifyTrait(Operation *op) {
-    auto resElemType = getElementTypeOrSelf(op->getResult(0));
-
-    // In cases of floating point type, op requires the same element
-    // type for all operands and result.
-    if (llvm::isa<FloatType>(resElemType))
-      return impl::verifySameOperandsAndResultElementType(op);
-
+    // Check we have the three operands; lhs, rhs and shift
+    // and a single result.
+    if (failed(impl::verifyNOperands(op, 3)) ||
+        failed(impl::verifyNResults(op, 1)))
+      return failure();
+
+    Type resElemType = getElementTypeOrSelf(op->getResult(0));
+    Type lhsElemType = getElementTypeOrSelf(op->getOperand(0));
+    Type rhsElemType = getElementTypeOrSelf(op->getOperand(1));
+
+    // Verify operands type match (ignoring the shift parameter which will
+    // always be i8).
+    if (lhsElemType != rhsElemType)
+      return op->emitOpError("requires the same element type for all operands");
+
+    // Though the spec requires the element type of result to be i32, a more
+    // relaxed way is provided at dialect level for easier cooperating with
+    // other dialects.
     if (auto resIntType = dyn_cast<IntegerType>(resElemType)) {
-      IntegerType lhsIntType =
-          cast<IntegerType>(getElementTypeOrSelf(op->getOperand(0)));
-      IntegerType rhsIntType =
-          cast<IntegerType>(getElementTypeOrSelf(op->getOperand(1)));
-      if (lhsIntType != rhsIntType)
-        return op->emitOpError(
-            "requires the same element type for all operands");
-
-      // Though the spec requires the element type of result to be i32, a more
-      // relaxed way is provided at dialect level for easier cooperating with
-      // other dialects.
+      auto lhsIntType = cast<IntegerType>(lhsElemType);
       if (lhsIntType.getWidth() > resIntType.getWidth())
         return op->emitOpError("invalid data type size for operands or result");
-
-      return success();
+    } else {
+      // In cases of floating point type or quant types, op requires the same
+      // element type for all operands and result (excluding shift).
+      if (resElemType != lhsElemType)
+        return op->emitOpError(
+            "requires the same element type for all operands and results");
     }
 
-    // In cases of all other types, op requires the same element
-    // type for all operands and result.
-    return impl::verifySameOperandsAndResultElementType(op);
+    return llvm::success();
   }
 };
 
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 2186510e7db1e1..758f49079e74e5 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -482,7 +482,9 @@ def Tosa_ErfOp : Tosa_ElementwiseUnaryOp<"erf"> {
 //===----------------------------------------------------------------------===//
 def Tosa_AddOp : Tosa_ElementwiseOp<"add", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise addition operator";
 
   let description = [{
@@ -515,8 +517,10 @@ def Tosa_AddOp : Tosa_ElementwiseOp<"add", [
 //===----------------------------------------------------------------------===//
 // Operator: arithmetic_right_shift
 //===----------------------------------------------------------------------===//
-def Tosa_ArithmeticRightShiftOp : Tosa_ElementwiseOp<"arithmetic_right_shift",
-    [SameOperandsAndResultElementType]> {
+def Tosa_ArithmeticRightShiftOp : Tosa_ElementwiseOp<"arithmetic_right_shift", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise Arithmetic Right Shift";
 
   let description = [{
@@ -540,7 +544,9 @@ def Tosa_ArithmeticRightShiftOp : Tosa_ElementwiseOp<"arithmetic_right_shift",
 //===----------------------------------------------------------------------===//
 def Tosa_BitwiseAndOp : Tosa_ElementwiseOp<"bitwise_and", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Bitwise AND operator";
 
   let description = [{
@@ -563,7 +569,9 @@ def Tosa_BitwiseAndOp : Tosa_ElementwiseOp<"bitwise_and", [
 //===----------------------------------------------------------------------===//
 def Tosa_BitwiseOrOp : Tosa_ElementwiseOp<"bitwise_or", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Bitwise OR operator";
 
   let description = [{
@@ -586,7 +594,9 @@ def Tosa_BitwiseOrOp : Tosa_ElementwiseOp<"bitwise_or", [
 //===----------------------------------------------------------------------===//
 def Tosa_BitwiseXorOp : Tosa_ElementwiseOp<"bitwise_xor", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Bitwise XOR operator";
 
   let description = [{
@@ -607,7 +617,10 @@ def Tosa_BitwiseXorOp : Tosa_ElementwiseOp<"bitwise_xor", [
 //===----------------------------------------------------------------------===//
 // Operator: int_div
 //===----------------------------------------------------------------------===//
-def Tosa_IntDivOp : Tosa_ElementwiseOp<"int_div", [SameOperandsAndResultElementType]> {
+def Tosa_IntDivOp : Tosa_ElementwiseOp<"int_div", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultRank,
+    SameOperandsAndResultElementType]> {
   let summary = "Integer divide operator";
 
   let description = [{
@@ -632,7 +645,9 @@ def Tosa_IntDivOp : Tosa_ElementwiseOp<"int_div", [SameOperandsAndResultElementT
 //===----------------------------------------------------------------------===//
 def Tosa_LogicalAndOp : Tosa_ElementwiseOp<"logical_and", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Returns the truth value of x AND y element-wise.";
 
   let description = [{
@@ -653,8 +668,10 @@ def Tosa_LogicalAndOp : Tosa_ElementwiseOp<"logical_and", [
 //===----------------------------------------------------------------------===//
 // Operator: logical_left_shift
 //===----------------------------------------------------------------------===//
-def Tosa_LogicalLeftShiftOp : Tosa_ElementwiseOp<"logical_left_shift",
-    [SameOperandsAndResultElementType]> {
+def Tosa_LogicalLeftShiftOp : Tosa_ElementwiseOp<"logical_left_shift", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise Logical Left Shift";
 
   let description = [{
@@ -675,8 +692,10 @@ def Tosa_LogicalLeftShiftOp : Tosa_ElementwiseOp<"logical_left_shift",
 //===----------------------------------------------------------------------===//
 // Operator: logical_right_shift
 //===----------------------------------------------------------------------===//
-def Tosa_LogicalRightShiftOp : Tosa_ElementwiseOp<"logical_right_shift",
-    [SameOperandsAndResultElementType]> {
+def Tosa_LogicalRightShiftOp : Tosa_ElementwiseOp<"logical_right_shift", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise Logical Right Shift";
 
   let description = [{
@@ -699,7 +718,9 @@ def Tosa_LogicalRightShiftOp : Tosa_ElementwiseOp<"logical_right_shift",
 //===----------------------------------------------------------------------===//
 def Tosa_LogicalOrOp : Tosa_ElementwiseOp<"logical_or", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Returns the truth value of x OR y element-wise.";
 
   let description = [{
@@ -722,7 +743,9 @@ def Tosa_LogicalOrOp : Tosa_ElementwiseOp<"logical_or", [
 //===----------------------------------------------------------------------===//
 def Tosa_LogicalXorOp : Tosa_ElementwiseOp<"logical_xor", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Returns the truth value of x XOR y element-wise.";
 
   let description = [{
@@ -745,7 +768,9 @@ def Tosa_LogicalXorOp : Tosa_ElementwiseOp<"logical_xor", [
 //===----------------------------------------------------------------------===//
 def Tosa_MaximumOp : Tosa_ElementwiseOp<"maximum", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise Maximum";
 
   let description = [{
@@ -769,7 +794,9 @@ def Tosa_MaximumOp : Tosa_ElementwiseOp<"maximum", [
 //===----------------------------------------------------------------------===//
 def Tosa_MinimumOp : Tosa_ElementwiseOp<"minimum", [
     Commutative,
-    SameOperandsAndResultElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise Minimum";
 
   let description = [{
@@ -810,7 +837,7 @@ def Tosa_MulOp : Tosa_ElementwiseOp<"mul", [
   let arguments = (ins
     Tosa_Tensor:$input1,
     Tosa_Tensor:$input2,
-    I8Attr:$shift
+    TosaTensorRankOf<[Tosa_Int8], [1]>:$shift
   );
 
   let results = (outs
@@ -824,7 +851,10 @@ def Tosa_MulOp : Tosa_ElementwiseOp<"mul", [
 //===----------------------------------------------------------------------===//
 // Operator: pow
 //===----------------------------------------------------------------------===//
-def Tosa_PowOp : Tosa_ElementwiseOp<"pow", [SameOperandsAndResultElementType]> {
+def Tosa_PowOp : Tosa_ElementwiseOp<"pow", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Computes the power of one value to another.";
 
   let description = [{
@@ -845,7 +875,10 @@ def Tosa_PowOp : Tosa_ElementwiseOp<"pow", [SameOperandsAndResultElementType]> {
 //===----------------------------------------------------------------------===//
 // Operator: sub
 //===----------------------------------------------------------------------===//
-def Tosa_SubOp : Tosa_ElementwiseOp<"sub", [SameOperandsAndResultElementType]> {
+def Tosa_SubOp : Tosa_ElementwiseOp<"sub", [
+    ResultsBroadcastableShape,
+    SameOperandsAndResultElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Elementwise subtraction operator";
 
   let description = [{
@@ -1196,7 +1229,9 @@ def Tosa_SinOp : Tosa_ElementwiseUnaryOp<"sin"> {
 //===----------------------------------------------------------------------===//
 // Operator: select
 //===----------------------------------------------------------------------===//
-def Tosa_SelectOp : Tosa_ElementwiseOp<"select"> {
+def Tosa_SelectOp : Tosa_ElementwiseOp<"select", [
+  ResultsBroadcastableShape,
+  SameOperandsAndResultRank]> {
   let summary = "Elementwise select operator";
 
   let description = [{
@@ -1232,7 +1267,9 @@ def Tosa_SelectOp : Tosa_ElementwiseOp<"select"> {
 def Tosa_EqualOp : Tosa_ElementwiseOp<"equal", [
     InferTensorType,
     Commutative,
-    SameOperandsElementType]> {
+    ResultsBroadcastableShape,
+    SameOperandsElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Returns the truth value of (x == y) element-wise.";
 
   let description = [{
@@ -1260,7 +1297,10 @@ def Tosa_EqualOp : Tosa_ElementwiseOp<"equal", [
 //===----------------------------------------------------------------------===//
 // Operator: greater
 //===----------------------------------------------------------------------===//
-def Tosa_GreaterOp : Tosa_ElementwiseOp<"greater", [SameOperandsElementType]> {
+def Tosa_GreaterOp : Tosa_ElementwiseOp<"greater", [
+    ResultsBroadcastableShape,
+    SameOperandsElementType,
+    SameOperandsAndResultRank]> {
   let summary = "Returns the truth value of (x > y) element-wise.";
 
   let description = [{
@@ -1282,8 +1322,11 @@ def Tosa_GreaterOp : Tosa_ElementwiseOp<"greater", [SameOperandsElementType]> {
 //===----------------------------------------------------------------------===//
 // Operator: greater_equal
 //===----------------------------------------------------------------------===//
-def Tosa_GreaterEqualOp : Tosa_ElementwiseOp<"greater_equal",
-    [SameOperandsElementType]> {
+def Tosa_GreaterEqualOp : Tosa_ElementwiseOp<"greater_equal", [
+    ResultsBroadcastableShape,
+     SameOperandsElementType,
+     SameOperandsAndResultRank
+    ]> {
   let summary = "Returns the truth value of (x >= y) element-wise.";
 
   let description = [{
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index f97e0ff1e30ea7..b0eb2d6cbc30b6 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -90,43 +90,54 @@ static Value createLinalgBodyCalculationForElementwiseOp(
   }
 
   // tosa::MulOp
-  if (isa<tosa::MulOp>(op) && isa<FloatType>(elementTy))
-    return rewriter.create<arith::MulFOp>(loc, resultTypes, args);
-
-  if (isa<tosa::MulOp>(op) && isa<IntegerType>(elementTy)) {
-    Value a = args[0];
-    Value b = args[1];
-    auto shift =
-        cast<IntegerAttr>(op->getAttr("shift")).getValue().getSExtValue();
-    if (shift > 0) {
-      auto shiftConst =
-          rewriter.create<arith::ConstantIntOp>(loc, shift, /*bitwidth=*/8);
-      if (!a.getType().isInteger(32))
-        a = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), a);
-
-      if (!b.getType().isInteger(32))
-        b = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), b);
-
-      auto result = rewriter.create<tosa::ApplyScaleOp>(
-          loc, rewriter.getI32Type(), a, b, shiftConst,
-          rewriter.getBoolAttr(false));
-
-      if (elementTy.isInteger(32))
-        return result;
-
-      return rewriter.create<arith::TruncIOp>(loc, elementTy, result);
+  if (isa<tosa::MulOp>(op)) {
+    auto shift_val = cast<tosa::MulOp>(op).getShift();
+
+    if (isa<FloatType>(elementTy)) {
+      return rewriter.create<arith::MulFOp>(loc, resultTypes, args[0], args[1]);
     }
 
-    int aWidth = a.getType().getIntOrFloatBitWidth();
-    int bWidth = b.getType().getIntOrFloatBitWidth();
-    int cWidth = resultTypes[0].getIntOrFloatBitWidth();
+    if (isa<IntegerType>(elementTy)) {
+      int32_t shift = 0;
+      ElementsAttr shift_elem;
+      if (shift_val.getImpl() &&
+          matchPattern(shift_val, m_Constant(&shift_elem))) {
+        // Explicit shift is set.
+        shift = shift_elem.getValues<IntegerAttr>()[0].getInt();
+      }
+
+      Value a = args[0];
+      Value b = args[1];
+      if (shift > 0) {
+        auto shiftConst =
+            rewriter.create<arith::ConstantIntOp>(loc, shift, /*bitwidth=*/8);
+        if (!a.getType().isInteger(32))
+          a = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), a);
 
-    if (aWidth < cWidth)
-      a = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], a);
-    if (bWidth < cWidth)
-      b = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], b);
+        if (!b.getType().isInteger(32))
+          b = rewriter.create<arith::ExtSIOp>(loc, rewriter.getI32Type(), b);
 
-    return rewriter.create<arith::MulIOp>(loc, resultTypes, a, b);
+        auto result = rewriter.create<tosa::ApplyScaleOp>(
+            loc, rewriter.getI32Type(), a, b, shiftConst,
+            rewriter.getBoolAttr(false));
+
+        if (elementTy.isInteger(32))
+          return result;
+
+        return rewriter.create<arith::TruncIOp>(loc, elementTy, result);
+      }
+
+      int aWidth = a.getType().getIntOrFloatBitWidth();
+      int bWidth = b.getType().getIntOrFloatBitWidth();
+      int cWidth = resultTypes[0].getIntOrFloatBitWidth();
+
+      if (aWidth < cWidth)
+        a = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], a);
+      if (bWidth < cWidth)
+        b = rewriter.create<arith::ExtSIOp>(loc, resultTypes[0], b);
+
+      return rewriter.create<arith::MulIOp>(loc, resultTypes, a, b);
+    }
   }
 
   // tosa::NegateOp
@@ -940,7 +951,13 @@ elementwiseMatchAndRewriteHelper(Operation *operation, ValueRange operands,
   auto loc = operation->getLoc();
   auto rank =
       cast<RankedTensorType>(operation->getResultTypes().front()).getRank();
-  auto expandedOperands = expandInputRanks(rewriter, loc, operands, rank);
+  // For the mul op we need to avoid expanding the rank of the optional shift
+  // input.
+  auto operandsToExpand =
+      isa<tosa::MulOp>(operation) ? operands.take_front(2) : operands;
+
+  auto expandedOperands =
+      expandInputRanks(rewriter, loc, operandsToExpand, rank);
   auto [targetShape, masterOperands] =
       computeTargetShape(rewriter, loc, indexPool, expandedOperands);
   auto broadcastOperands = broadcastDynamicDimensions(
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index b8e0005dc1bc03..ddfcde6de14f14 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -665,7 +665,18 @@ OpFoldResult MulOp::fold(FoldAdaptor adaptor) {
   auto rhsAttr =
       llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
 
-  const int64_t shift = llvm::isa<IntegerType>(resultETy) ? getShift() : 0;
+  // Result right shift on i32_t data type only. For simplification, synthesize
+  // a zero shift for other data type.
+  int32_t shift = 0;
+  if (resultETy.isInteger(32)) {
+    ElementsAttr shift_elem;
+    if (getShift().getImpl()) {
+      if (!matchPattern(getShift(), m_Constant(&shift_elem)))
+        // cannot be folded when the shift value is unknown.
+        return {};
+      shift = shift_elem.getValues<IntegerAttr>()[0].getInt();
+    }
+  }
 
   if (rhsTy == resultTy) {
     if (isSplatZero(resultETy, lhsAttr))
@@ -680,7 +691,7 @@ OpFoldResult MulOp::fold(FoldAdaptor adaptor) {
       return lhs;
   }
 
-  return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, getShift());
+  return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, shift);
 }
 
 OpFoldResult SubOp::fold(FoldAdaptor adaptor) {
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index fdccce60fe1d86..ae4e09a1e324c6 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -945,9 +945,76 @@ LogicalResult tosa::SliceOp::verify() {
 }
 
 LogicalResult tosa::MulOp::verify() {
-  Type elementTy = getInput1().getType().getElementType();
-  if (isa<FloatType>(elementTy) && getShift() != 0)
-    return emitOpError() << "require shift to be 0 for float type";
+  auto resElemType = getElementTypeOrSelf(getOutput());
+
+  // Verify if the element type among operands and result match tosa
+  // specification.
+  if (auto resIntType = dyn_cast<IntegerType>(resElemType)) {
+    IntegerType lhsIntType =
+        cast<IntegerType>(getElementTypeOrSelf(getInput1()));
+    IntegerType rhsIntType =
+        cast<IntegerType>(getElementTypeOrSelf(getInput2()));
+    if (lhsIntType != rhsIntType)
+      return emitOpError("requires the same element type for all operands");
+
+    // Though the spec requires the element type of result to be i32, a more
+    // relaxed way is provided at dialect level for easier cooperating with
+    // other dialects.
+    if (lhsIntType.getWidth() > resIntType.getWidth())
+      return emitOpError("invalid data type size for operands or result");
+
+  } else {
+    // For other supported type, the spec requires requires the same element
+    // type for all operands (excludes `shift` operand) and results.
+    for (int i = 0; i < 2; ++i) {
+      if (getElementTypeOrSelf(getOperand(i)) != resElemType)
+        return emitOpError(
+            "requires the same element type for all operands and results");
+    }
+  }
+
+  // Verify the op has same ranks for all main operands (excludes extra operands
+  // such as shift of mul op, so this is the only difference with the built-in
+  // `SameOperandsAndResultRank` trait) and results types, if known.
+
+  // delegate function that returns true if type is a shaped type with known
+  // rank
+  auto hasRank = [](const Type type) {
+    if (auto shaped_type = dyn_cast<ShapedType>(type))
+      return shaped_type.hasRank();
+
+    return false;
+  };
+
+  auto rankedOperandTypes =
+      llvm::to_vector(llvm::make_filter_range(getOperandTypes(), hasRank));
+
+  auto rankedResultTypes =
+      llvm::make_filter_range(getOperation()->getResultTypes(), hasRank);
+
+  // If all operands and results are unranked, then no further verification.
+  if (rankedOperandTypes.empty() && rankedResultTypes.empty())
+    return success();
+
+  // delegate function that returns rank of shaped type with known rank
+  auto getRank = [](const Type type) {
+    return cast<ShapedType>(type).getRank();
+  };
+
+  auto rank = !rankedOperandTypes.empty() ? getRank(*rankedOperandTypes.begin())
+                                          : getRank(*rankedResultTypes.begin());
+
+  for (size_t i = 0; i < 2; ++i) {
+    if (rank != getRank(rankedOperandTypes[i])) {
+      return emitOpError("operands don't have matching ranks");
+    }
+  }
+
+  for (const auto type : rankedResultTypes) {
+    if (rank != getRank(type)) {
+      return emitOpError("result type has different rank than operands");
+    }
+  }
 
   return success();
 }
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
index 45f4419875b485..181aff3a9ce04f 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp
@@ -14,6 +14,7 @@
 #include "mlir/Dialect/Tosa/IR/TosaOps.h"
 #include "mlir/Dialect/Tosa/Transforms/Passes.h"
 #include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
+#include "mlir/IR/BuiltinTypes.h"
 #include "mlir/Pass/Pass.h"
 
 using namespace mlir;
@@ -131,9 +132,15 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
       return failure();
     }
 
+    auto shiftElementType = IntegerType::get(rewriter.getContext(), 8);
+    auto shiftType = RankedTensorType::get({1}, shiftElementType);
+    auto shiftZeroAttr = DenseElementsAttr::get(
+        shiftType, rewriter.getIntegerAttr(shiftElementType, 0));
+    Value constZero =
+        rewriter.create<tosa::ConstOp>(op.getLoc(), shiftType, shiftZeroAttr);
     Value mulValue = rewriter
                          .create<tosa::MulOp>(op.getLoc(), mulShapeType, input,
-                                              weight, /*shift=*/0)
+                                              weight, constZero)
                          .getResult();
 
     // Reshape output to [N, H, W, C * M].
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
index 2a990eed3f681e..79afc75fd6c8ee 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
@@ -113,7 +113,7 @@ struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
 
     Value input1 = tosaBinaryOp.getInput1();
     Value input2 = tosaBinaryOp.getInput2();
-    int32_t shift = tosaBinaryOp.getShift();
+    Value shift = tosaBinaryOp.getShift();
     Value output = tosaBinaryOp.getResult();
     auto outputType = dyn_cast<RankedTensorType>(output.getType());
     if (!outputType)
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index f860dca85c9e9c..3704b4c29fceaf 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -472,7 +472,8 @@ func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
 
   // CHECK: linalg.generic
   // CHECK: arith.mulf
-  %4 = tosa.mul %0, %1 {shift = 0 : i8} : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %4 = tosa.mul %0, %1, %shift : (tensor<1xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<1xf32>
 
   // CHECK: linalg.generic
   // CHECK: arith.negf
@@ -618,7 +619,8 @@ func.func @test_simple_i16(%arg0: tensor<1xi16>) -> () {
   // CHECK: arith.extsi
   // CHECK: arith.extsi
   // CHECK: arith.muli
-  %0 = tosa.mul %arg0, %arg0 {shift = 0 : i8} : (tensor<1xi16>, tensor<1xi16>) -> tensor<1xi32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %0 = tosa.mul %arg0, %arg0, %shift : (tensor<1xi16>, tensor<1xi16>, tensor<1xi8>) -> tensor<1xi32>
 
   return
 }
@@ -646,12 +648,14 @@ func.func @test_simple_i32(%arg0: tensor<1xi32>, %unsigned: tensor<1xui32>, %uns
 
   // CHECK: linalg.generic
   // CHECK: arith.muli
-  %2 = tosa.mul %arg0, %arg0 {shift = 0 : i8} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
+  %shift1 = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %2 = tosa.mul %arg0, %arg0, %shift1 : (tensor<1xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<1xi32>
 
   // CHECK: linalg.generic
   // CHECK: arith.constant 2
   // CHECK: apply_scale
-  %3 = tosa.mul %arg0, %arg0 {shift = 2 : i8} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
+  %shift2 = "tosa.const"() <{value = dense<2> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %3 = tosa.mul %arg0, %arg0, %shift2: (tensor<1xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<1xi32>
 
   // CHECK: linalg.generic
   // CHECK: arith.divsi
diff --git a/mlir/test/Dialect/Tosa/canonicalize.mlir b/mlir/test/Dialect/Tosa/canonicalize.mlir
index 6f47f041b9199a..7d3e49d7392dc5 100644
--- a/mlir/test/Dialect/Tosa/canonicalize.mlir
+++ b/mlir/test/Dialect/Tosa/canonicalize.mlir
@@ -332,7 +332,8 @@ func.func @mul_one_float(%arg0: tensor<2x3xf32>) -> tensor<2x3xf32> {
   // CHECK: return %arg0
   // CHECK-NOT: tosa.mul
   %ones = "tosa.const"() {value = dense<1.0> : tensor<2x3xf32>} : () -> tensor<2x3xf32>
-  %1 = tosa.mul %arg0, %ones {shift = 0 : i8} : (tensor<2x3xf32>, tensor<2x3xf32>) -> tensor<2x3xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %1 = tosa.mul %arg0, %ones, %shift : (tensor<2x3xf32>, tensor<2x3xf32>, tensor<1xi8>) -> tensor<2x3xf32>
   return %1 : tensor<2x3xf32>
 }
 
@@ -343,7 +344,8 @@ func.func @mul_bcast_one_float(%arg0: tensor<2x3xf32>) -> tensor<2x3xf32> {
   // CHECK: return %arg0
   // CHECK-NOT: tosa.mul
   %ones = "tosa.const"() {value = dense<1.0> : tensor<1x1xf32>} : () -> tensor<1x1xf32>
-  %1 = tosa.mul %ones, %arg0 {shift = 0 : i8} : (tensor<1x1xf32>, tensor<2x3xf32>) -> tensor<2x3xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %1 = tosa.mul %ones, %arg0, %shift : (tensor<1x1xf32>, tensor<2x3xf32>, tensor<1xi8>) -> tensor<2x3xf32>
   return %1 : tensor<2x3xf32>
 }
 
@@ -353,8 +355,22 @@ func.func @mul_bcast_one_float(%arg0: tensor<2x3xf32>) -> tensor<2x3xf32> {
 func.func @mul_one_int(%arg0: tensor<2x3xi32>) -> tensor<2x3xi32> {
   // CHECK: return %arg0
   // CHECK-NOT: tosa.mul
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
   %ones = "tosa.const"() {value = dense<1> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
-  %1 = tosa.mul %arg0, %ones {shift = 0 : i8} : (tensor<2x3xi32>, tensor<2x3xi32>) -> tensor<2x3xi32>
+  %1 = tosa.mul %arg0, %ones, %shift : (tensor<2x3xi32>, tensor<2x3xi32>, tensor<1xi8>) -> tensor<2x3xi32>
+  return %1 : tensor<2x3xi32>
+}
+
+// -----
+
+// CHECK-LABEL: @mul_one_int_and_shift
+func.func @mul_one_int_and_shift(%arg0: tensor<2x3xi32>) -> tensor<2x3xi32> {
+  // CHECK-DAG: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<1> : tensor<2x3xi32>}>
+  // CHECK-DAG: %[[VAL_2:.*]] = "tosa.const"() <{value = dense<31> : tensor<1xi8>}>
+  // CHECK: %[[VAL_3:.*]] = tosa.mul %arg0, %[[VAL_1]], %[[VAL_2]] : (tensor<2x3xi32>, tensor<2x3xi32>, tensor<1xi8>)
+  %ones = "tosa.const"() {value = dense<1> : tensor<2x3xi32>} : () -> tensor<2x3xi32>
+  %shift = "tosa.const"() <{value = dense<31> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %1 = tosa.mul %arg0, %ones, %shift : (tensor<2x3xi32>, tensor<2x3xi32>, tensor<1xi8>) -> tensor<2x3xi32>
   return %1 : tensor<2x3xi32>
 }
 
@@ -365,11 +381,12 @@ func.func @mul_zero_broadcast(%arg0: tensor<2x3xf32>) -> (tensor<2x3xf32>, tenso
   // CHECK: %[[ZERO:.*]] = "tosa.const"() <{value = dense<0.000000e+00> : tensor<2x3xf32>}
   // CHECK-NOT: tosa.mul
   %zeros = "tosa.const"() {value = dense<0.0> : tensor<1x1xf32>} : () -> tensor<1x1xf32>
-  %1 = tosa.mul %arg0, %zeros {shift = 0 : i8} : (tensor<2x3xf32>, tensor<1x1xf32>) -> tensor<2x3xf32>
+  %shift = "tosa.const"() <{value = dense<31> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %1 = tosa.mul %arg0, %zeros, %shift : (tensor<2x3xf32>, tensor<1x1xf32>, tensor<1xi8>) -> tensor<2x3xf32>
 
   // CHECK-NOT: tosa.mul
   // CHECK: return %[[ZERO]], %[[ZERO]]
-  %2 = tosa.mul %zeros, %arg0 {shift = 0 : i8} : (tensor<1x1xf32>, tensor<2x3xf32>) -> tensor<2x3xf32>
+  %2 = tosa.mul %zeros, %arg0, %shift : (tensor<1x1xf32>, tensor<2x3xf32>, tensor<1xi8>) -> tensor<2x3xf32>
   return %1, %2 : tensor<2x3xf32>, tensor<2x3xf32>
 }
 
@@ -927,7 +944,8 @@ func.func @mul_quant_nofold() -> tensor<1x!quant.uniform<i8:f32, 3.0757404601899
    // CHECK: tosa.mul
    %0 = "tosa.const"() {value = dense<0> : tensor<1xi8>} : () -> tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>
    %1 = "tosa.const"() {value = dense<1> : tensor<1xi8>} : () -> tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>
-   %2 = tosa.mul %0, %1 { shift = 0 : i8} : (tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>, tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>) -> tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>
+  %shift = "tosa.const"() <{value = dense<31> : tensor<1xi8>}> : () -> tensor<1xi8>
+   %2 = tosa.mul %0, %1, %shift : (tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>, tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>, tensor<1xi8>)-> tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>
    return %2 : tensor<1x!quant.uniform<i8:f32, 3.0757404601899907E-5:-128>>
 }
 
diff --git a/mlir/test/Dialect/Tosa/constant-op-fold.mlir b/mlir/test/Dialect/Tosa/constant-op-fold.mlir
index 8198903b78ac05..4c872e02fd03e4 100644
--- a/mlir/test/Dialect/Tosa/constant-op-fold.mlir
+++ b/mlir/test/Dialect/Tosa/constant-op-fold.mlir
@@ -237,8 +237,9 @@ func.func @fold_div_splat_i32() -> tensor<i32> {
 // CHECK-LABEL: @fold_mul_zero_rhs_f32
 func.func @fold_mul_zero_rhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
   %zero = "tosa.const"() {value = dense<0.0> : tensor<f32>} : () -> tensor<f32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
   // CHECK: %[[ZERO:.+]] = "tosa.const"() <{value = dense<0.000000e+00>
-  %mul = tosa.mul %arg0, %zero {shift = 0 : i8} : (tensor<f32>, tensor<f32>) -> tensor<f32>
+  %mul = tosa.mul %arg0, %zero, %shift : (tensor<f32>, tensor<f32>, tensor<1xi8>) -> tensor<f32>
   // CHECK: return %[[ZERO]]
   return %mul : tensor<f32>
 }
@@ -248,8 +249,9 @@ func.func @fold_mul_zero_rhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
 // CHECK-LABEL: @fold_mul_zero_lhs_f32
 func.func @fold_mul_zero_lhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
   %zero = "tosa.const"() {value = dense<0.0> : tensor<f32>} : () -> tensor<f32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
   // CHECK: %[[ZERO:.+]] = "tosa.const"() <{value = dense<0.000000e+00>
-  %mul = tosa.mul %zero, %arg0 {shift = 0 : i8} : (tensor<f32>, tensor<f32>) -> tensor<f32>
+  %mul = tosa.mul %zero, %arg0, %shift : (tensor<f32>, tensor<f32>, tensor<1xi8>) -> tensor<f32>
   // CHECK: return %[[ZERO]]
   return %mul : tensor<f32>
 }
@@ -259,8 +261,9 @@ func.func @fold_mul_zero_lhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
 // CHECK-LABEL: @fold_mul_zero_rhs_i32
 func.func @fold_mul_zero_rhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
   %zero = "tosa.const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
   // CHECK: %[[ZERO:.+]] = "tosa.const"() <{value = dense<0>
-  %mul = tosa.mul %arg0, %zero {shift = 0 : i8} : (tensor<i32>, tensor<i32>) -> tensor<i32>
+  %mul = tosa.mul %arg0, %zero, %shift : (tensor<i32>, tensor<i32>, tensor<1xi8>) -> tensor<i32>
   // CHECK: return %[[ZERO]]
   return %mul : tensor<i32>
 }
@@ -270,8 +273,9 @@ func.func @fold_mul_zero_rhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
 // CHECK-LABEL: @fold_mul_zero_lhs_i32
 func.func @fold_mul_zero_lhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
   %zero = "tosa.const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
   // CHECK: %[[ZERO:.+]] = "tosa.const"() <{value = dense<0>
-  %mul = tosa.mul %zero, %arg0 {shift = 0 : i8} : (tensor<i32>, tensor<i32>) -> tensor<i32>
+  %mul = tosa.mul %zero, %arg0, %shift : (tensor<i32>, tensor<i32>, tensor<1xi8>) -> tensor<i32>
   // CHECK: return %[[ZERO]]
   return %mul : tensor<i32>
 }
@@ -281,7 +285,8 @@ func.func @fold_mul_zero_lhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
 // CHECK-LABEL: @fold_mul_one_rhs_f32
 func.func @fold_mul_one_rhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
   %one = "tosa.const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32>
-  %mul = tosa.mul %arg0, %one {shift = 0 : i8} : (tensor<f32>, tensor<f32>) -> tensor<f32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %mul = tosa.mul %arg0, %one, %shift : (tensor<f32>, tensor<f32>, tensor<1xi8>) -> tensor<f32>
   // CHECK: return %arg0
   return %mul : tensor<f32>
 }
@@ -291,7 +296,8 @@ func.func @fold_mul_one_rhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
 // CHECK-LABEL: @fold_mul_one_lhs_f32
 func.func @fold_mul_one_lhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
   %one = "tosa.const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32>
-  %mul = tosa.mul %one, %arg0 {shift = 0 : i8} : (tensor<f32>, tensor<f32>) -> tensor<f32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %mul = tosa.mul %one, %arg0, %shift : (tensor<f32>, tensor<f32>, tensor<1xi8>) -> tensor<f32>
   // CHECK: return %arg0
   return %mul : tensor<f32>
 }
@@ -301,7 +307,8 @@ func.func @fold_mul_one_lhs_f32(%arg0: tensor<f32>) -> tensor<f32> {
 // CHECK-LABEL: @fold_mul_one_rhs_i32
 func.func @fold_mul_one_rhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
   %one = "tosa.const"() {value = dense<64> : tensor<i32>} : () -> tensor<i32>
-  %mul = tosa.mul %arg0, %one {shift = 6 : i8} : (tensor<i32>, tensor<i32>) -> tensor<i32>
+  %shift = "tosa.const"() {value = dense<6> : tensor<1xi8>} : () -> tensor<1xi8>
+  %mul = tosa.mul %arg0, %one, %shift : (tensor<i32>, tensor<i32>, tensor<1xi8>) -> tensor<i32>
   // CHECK: return %arg0
   return %mul : tensor<i32>
 }
@@ -311,7 +318,8 @@ func.func @fold_mul_one_rhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
 // CHECK-LABEL: @fold_mul_one_lhs_i32
 func.func @fold_mul_one_lhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
   %one = "tosa.const"() {value = dense<64> : tensor<i32>} : () -> tensor<i32>
-  %mul = tosa.mul %one, %arg0 {shift = 6 : i8} : (tensor<i32>, tensor<i32>) -> tensor<i32>
+  %shift = "tosa.const"() {value = dense<6> : tensor<1xi8>} : () -> tensor<1xi8>
+  %mul = tosa.mul %one, %arg0, %shift : (tensor<i32>, tensor<i32>, tensor<1xi8>) -> tensor<i32>
   // CHECK: return %arg0
   return %mul : tensor<i32>
 }
@@ -322,7 +330,8 @@ func.func @fold_mul_one_lhs_i32(%arg0: tensor<i32>) -> tensor<i32> {
 func.func @fold_mul_splat_i8() -> tensor<10xi32> {
   %one = "tosa.const"() {value = dense<17> : tensor<10xi8>} : () -> tensor<10xi8>
   %two = "tosa.const"() {value = dense<32> : tensor<10xi8>} : () -> tensor<10xi8>
-  %mul = tosa.mul %one, %two {shift = 3 : i8} : (tensor<10xi8>, tensor<10xi8>) -> tensor<10xi32>
+  %shift = "tosa.const"() {value = dense<3> : tensor<1xi8>} : () -> tensor<1xi8>
+  %mul = tosa.mul %one, %two, %shift : (tensor<10xi8>, tensor<10xi8>, tensor<1xi8>) -> tensor<10xi32>
   // CHECK: %[[THREE:.+]] = "tosa.const"() <{value = dense<68> : tensor<10xi32>}
   // CHECK: return %[[THREE]]
   return %mul : tensor<10xi32>
@@ -334,7 +343,8 @@ func.func @fold_mul_splat_i8() -> tensor<10xi32> {
 func.func @fold_mul_splat_f32() -> tensor<10xf32> {
   %one = "tosa.const"() {value = dense<3.0> : tensor<10xf32>} : () -> tensor<10xf32>
   %two = "tosa.const"() {value = dense<2.0> : tensor<10xf32>} : () -> tensor<10xf32>
-  %mul = tosa.mul %one, %two {shift = 0 : i8} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %mul = tosa.mul %one, %two, %shift : (tensor<10xf32>, tensor<10xf32>, tensor<1xi8>) -> tensor<10xf32>
   // CHECK: %[[THREE:.+]] = "tosa.const"() <{value = dense<6.000000e+00> : tensor<10xf32>}
   // CHECK: return %[[THREE]]
   return %mul : tensor<10xf32>
diff --git a/mlir/test/Dialect/Tosa/invalid.mlir b/mlir/test/Dialect/Tosa/invalid.mlir
index 4808867b28bb97..e9fb93d59e38a6 100644
--- a/mlir/test/Dialect/Tosa/invalid.mlir
+++ b/mlir/test/Dialect/Tosa/invalid.mlir
@@ -724,10 +724,21 @@ func.func @test_transpose_conv2d_invalid_outshape(%arg0: tensor<1x32x32x8xf32>,
 
 // -----
 
+// CHECK-LABEL: test_mul_invalid_shift_type
+func.func @test_mul_invalid_shift(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x1x3xf16>) -> tensor<13x21x3xf32> {
+  %shift = "tosa.const"() {value = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
+  // expected-error at +1 {{'tosa.mul' op requires the same element type for all operands}}
+  %0 = tosa.mul %arg0, %arg1, %shift : (tensor<13x21x3xf32>, tensor<13x1x3xf16>, tensor<1xi8>) -> tensor<13x21x3xf32>
+  return %0 : tensor<13x21x3xf32>
+}
+
+// -----
+
 // CHECK-LABEL: test_mul_invalid_shift
 func.func @test_mul_invalid_shift(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x1x3xf32>) -> tensor<13x21x3xf32> {
-  // expected-error at +1 {{'tosa.mul' op require shift to be 0 for float type}}
-  %0 = tosa.mul %arg0, %arg1 {shift = 1 : i8} : (tensor<13x21x3xf32>, tensor<13x1x3xf32>) -> tensor<13x21x3xf32>
+  %shift = "tosa.const"() {value = dense<0.0> : tensor<f32>} : () -> tensor<f32>
+  // expected-error at +1 {{'tosa.mul' op operand #2 must be 1D tensor of 8-bit signless integer values, but got 'tensor<f32>'}}
+  %0 = tosa.mul %arg0, %arg1, %shift : (tensor<13x21x3xf32>, tensor<13x1x3xf32>, tensor<f32>) -> tensor<13x21x3xf32>
   return %0 : tensor<13x21x3xf32>
 }
 
diff --git a/mlir/test/Dialect/Tosa/ops.mlir b/mlir/test/Dialect/Tosa/ops.mlir
index 19b93d7611854d..b2773a4f7f02f9 100644
--- a/mlir/test/Dialect/Tosa/ops.mlir
+++ b/mlir/test/Dialect/Tosa/ops.mlir
@@ -330,14 +330,16 @@ func.func @test_min(%arg0: tensor<13x21x3xf32>, %arg1: tensor<1x21x3xf32>) -> te
 // -----
 // CHECK-LABEL: mul
 func.func @test_mul(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x1x3xf32>) -> tensor<13x21x3xf32> {
-  %0 = tosa.mul %arg0, %arg1 {shift = 0 : i8} : (tensor<13x21x3xf32>, tensor<13x1x3xf32>) -> tensor<13x21x3xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %0 = tosa.mul %arg0, %arg1, %shift : (tensor<13x21x3xf32>, tensor<13x1x3xf32>, tensor<1xi8>) -> tensor<13x21x3xf32>
   return %0 : tensor<13x21x3xf32>
 }
 
 // -----
 // CHECK-LABEL: mul
 func.func @test_mul_relaxed_result_type(%arg0: tensor<13x21x3xi16>, %arg1: tensor<13x1x3xi16>) -> tensor<13x21x3xi16> {
-  %0 = "tosa.mul"(%arg0, %arg1)  { shift = 1 : i8 } : (tensor<13x21x3xi16>, tensor<13x1x3xi16>) -> tensor<13x21x3xi16>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %0 = tosa.mul %arg0, %arg1, %shift : (tensor<13x21x3xi16>, tensor<13x1x3xi16>, tensor<1xi8>) -> tensor<13x21x3xi16>
   return %0 : tensor<13x21x3xi16>
 }
 
diff --git a/mlir/test/Dialect/Tosa/tosa-decompose-depthwise.mlir b/mlir/test/Dialect/Tosa/tosa-decompose-depthwise.mlir
index bbcc206e1490c7..5f36dd3b3d137c 100644
--- a/mlir/test/Dialect/Tosa/tosa-decompose-depthwise.mlir
+++ b/mlir/test/Dialect/Tosa/tosa-decompose-depthwise.mlir
@@ -34,7 +34,7 @@ func.func @depthwise_conv2d_as_mul_q(%arg0: tensor<4x10x10x2xi8>, %arg1: tensor<
   // CHECK: %[[sIn:.+]] = tosa.sub %[[cIn]], %[[iZp]]
   // CHECK: %[[sWe:.+]] = tosa.sub %[[cWe]], %[[wZp]]
   // CHECK: %[[resWe:.+]] = tosa.reshape %[[sWe]] {new_shape = array<i64: 1, 1, 1, 2, 3>}
-  // CHECK: %[[mul:.+]] = tosa.mul %[[sIn]], %[[resWe]] {shift = 0 : i8}
+  // CHECK: %[[mul:.+]] = tosa.mul %[[sIn]], %[[resWe]]
   // CHECK: %[[reO:.+]] = tosa.reshape %[[mul]] {new_shape = array<i64: 4, 10, 10, 6>}
   // CHECK: %[[reArg2:.+]] = tosa.reshape %arg2 {new_shape = array<i64: 1, 1, 1, 6>}
   // CHECK: %[[add:.+]] = tosa.add %[[reO]], %[[reArg2]]
@@ -51,7 +51,7 @@ func.func @depthwise_conv2d_as_mul_padded(%arg0: tensor<4x10x10x2xf32>, %arg1: t
   // CHECK: %[[reIn:.+]] = tosa.reshape %arg0 {new_shape = array<i64: 4, 10, 10, 2, 1>}
   // CHECK: %[[padded:.+]] = tosa.pad %[[reIn]], %[[pad]], %[[zero]] : (tensor<4x10x10x2x1xf32>, !tosa.shape<10>, tensor<f32>) -> tensor<4x12x12x2x1xf32>
   // CHECK: %[[reArg1:.+]] = tosa.reshape %arg1 {new_shape = array<i64: 1, 1, 1, 2, 3>}
-  // CHECK: %[[mul:.+]] = tosa.mul %3, %[[reArg1]] {shift = 0 : i8}
+  // CHECK: %[[mul:.+]] = tosa.mul %[[padded]], %[[reArg1]]
   // CHECK: %[[reOut:.+]] = tosa.reshape %[[mul]] {new_shape = array<i64: 4, 12, 12, 6>}
   // CHECK: %[[reArg2:.+]] = tosa.reshape %arg2 {new_shape = array<i64: 1, 1, 1, 6>}
   // CHECK: %[[add:.+]] = tosa.add %[[reOut]], %[[reArg2]]
diff --git a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
index 6beb1ad6296135..dedfad3c6d2073 100644
--- a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
+++ b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
@@ -114,8 +114,9 @@ func.func @test_binary_scalar_f32(%arg0 : tensor<4xf32>, %arg1 : tensor<1xf32>)
   // CHECK: tosa.minimum %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
   %2 = tosa.minimum %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
 
-  // CHECK: tosa.mul %arg0, %arg1 {shift = 0 : i8} : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
-  %3 = tosa.mul %arg0, %arg1 { shift = 0 : i8 } : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
+  // CHECK: tosa.mul %arg0, %arg1, %{{.*}} : (tensor<4xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<4xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %3 = tosa.mul %arg0, %arg1, %shift : (tensor<4xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<*xf32>
 
   // CHECK: tosa.pow %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
   %4 = tosa.pow %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
@@ -148,8 +149,9 @@ func.func @test_binary_broadcast_f32(%arg0 : tensor<4xf32>, %arg1 : tensor<1xf32
   // CHECK: tosa.minimum %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
   %2 = tosa.minimum %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
 
-  // CHECK: tosa.mul %arg0, %arg1 {shift = 0 : i8} : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
-  %3 = tosa.mul %arg0, %arg1 { shift = 0 : i8 } : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
+  // CHECK: tosa.mul %arg0, %arg1, %{{.*}} : (tensor<4xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<4xf32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %3 = tosa.mul %arg0, %arg1, %shift : (tensor<4xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<*xf32>
 
   // CHECK: tosa.pow %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<4xf32>
   %4 = tosa.pow %arg0, %arg1 : (tensor<4xf32>, tensor<1xf32>) -> tensor<*xf32>
@@ -206,8 +208,9 @@ func.func @test_binary_i32(%arg0 : tensor<4xi32>, %arg1 : tensor<1xi32>) -> () {
   // CHECK: tosa.minimum %arg0, %arg1 : (tensor<4xi32>, tensor<1xi32>) -> tensor<4xi32>
   %10 = tosa.minimum %arg0, %arg1 : (tensor<4xi32>, tensor<1xi32>) -> tensor<*xi32>
 
-  // CHECK: tosa.mul %arg0, %arg1 {shift = 0 : i8} : (tensor<4xi32>, tensor<1xi32>) -> tensor<4xi32>
-  %11 = tosa.mul %arg0, %arg1 { shift = 0 : i8 }: (tensor<4xi32>, tensor<1xi32>) -> tensor<*xi32>
+  // CHECK: tosa.mul %arg0, %arg1, %{{.*}} : (tensor<4xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<4xi32>
+  %shift = "tosa.const"() <{value = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
+  %11 = tosa.mul %arg0, %arg1, %shift : (tensor<4xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<*xi32>
 
   // CHECK: tosa.pow %arg0, %arg1 : (tensor<4xi32>, tensor<1xi32>) -> tensor<4xi32>
   %12 = tosa.pow %arg0, %arg1 : (tensor<4xi32>, tensor<1xi32>) -> tensor<*xi32>
@@ -1369,7 +1372,7 @@ func.func @test_non_tosa_consumer_shape(%arg0: tensor<4x4xf32>) -> !shape.shape
 
 // -----
 
-// CHECK-LABEL: test_non_tosa_consumer_shape2
+// CHECK-LABEL: test_non_tosa_consumer_shape
 func.func @test_non_tosa_consumer_shape2(%arg0: tensor<4x4xf32>) -> tensor<?xindex> {
   // CHECK: tosa.log %arg0 : (tensor<4x4xf32>) -> tensor<4x4xf32>
   %0 = tosa.log %arg0 : (tensor<4x4xf32>) -> tensor<*xf32>



More information about the Mlir-commits mailing list