[Mlir-commits] [mlir] [mlir][linalg] Extend Linalg elemwise named ops semantics (PR #122753)
Adam Siemieniuk
llvmlistbot at llvm.org
Thu Jan 23 06:55:42 PST 2025
================
@@ -551,6 +551,136 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
+//===----------------------------------------------------------------------===//
+// Op definition for ElemwiseOp - with user-defined maps, computation type etc.
+//===----------------------------------------------------------------------===//
+
+def ElemwiseOp : LinalgStructuredBase_Op<"elemwise", [
+ AttrSizedOperandSegments]> {
+ let summary = [{ Performs element-wise operation }];
+ let description = [{
+ Linalg op form which performs element-wise computation. The attribute
+ `func_type` describes the operation type (e.g. add, exp). The func_type
+ can be any valid unary, binary, or ternary operation.
+
+ Affine-maps for operands and result may be provided by the user. When
+ a user-defined indexing_map is not provided, identity map is inferred
+ for all operands. The default indexing maps are N identity-maps. ‘N’
+ depends on the arity of the elementwise op. The number of dims is
+ inferred from rank of the output type. In the case of default indexing
+ map, the input and output shapes must all match. Affine-map for operands
+ and result must be only projected permutations with no zero constants.
+
+ For element-wise iterator-type is always inferred as all ‘parallel’.
+ Iterator-type is needed for constructing this underlying structured op.
+ The number of dims of the iterator-type is inferred from the rank of
+ the result type.
+
+ Example:
+ Defining a unary linalg.elemwise with default indexing-map:
+
+ ```mlir
+ %exp = linalg.elemwise
+ func_type=#linalg.elemwise_fn<exp>
+ ins(%x : tensor<4x16x8xf32>)
+ outs(%y: tensor<4x16x8xf32>) -> tensor<4x16x8xf32>
+ ```
+
+ Defining a binary linalg.elemwise with user-defined indexing-map:
+
+ ```mlir
+ %add = linalg.elemwise
+ func_type=#linalg.elemwise_fn<add>
+ indexing_maps = [#transpose, #broadcast, #identity]
+ ins(%exp, %arg1 : tensor<4x16x8xf32>, tensor<4x16xf32>)
+ outs(%arg2: tensor<4x8x16xf32>) -> tensor<4x8x16xf32>
+ ```
+ }];
+
+ let arguments = (ins
+ Variadic<AnyType>:$inputs,
+ Variadic<AnyShaped>:$outputs,
+ ElemwiseFnAttr:$func_type,
+ DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps
+ );
+
+ let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+ let regions = (region AnyRegion:$region);
----------------
adam-smnk wrote:
Just to cross-pollinate the Linalg discussions.
It looks like regions are required by Linalg's interface. Thus, all ops currently have and should have a region.
https://github.com/llvm/llvm-project/pull/122753
More information about the Mlir-commits
mailing list