[Mlir-commits] [mlir] [MLIR] TosaToLinalg: Prefer to emit identity maps (PR #123295)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Jan 16 23:46:20 PST 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Matthias Gehre (mgehre-amd)

<details>
<summary>Changes</summary>

When deciding whether to emit a map like
`#map = affine_map<(d0, d1, d2, d3) -> (0, d1, d2, d3)>` or `#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>` for an operand of a `linalg.generic` when lowering element-wise TOSA ops, prefer the latter unless broadcasting of the operand is really needed.

This helps later transformations which often require the affine map to be a projected permuatation.

---
Full diff: https://github.com/llvm/llvm-project/pull/123295.diff


2 Files Affected:

- (modified) mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp (+8-2) 
- (modified) mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir (+20) 


``````````diff
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 9295afd36e3ab1..a183c27abf62ae 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -882,8 +882,14 @@ emitElementwiseComputation(ConversionPatternRewriter &rewriter, Location loc,
     auto shape = cast<ShapedType>(operand.getType()).getShape();
     SmallVector<AffineExpr> affineExprs;
     for (auto it : llvm::enumerate(shape)) {
-      auto affineExpr = it.value() == 1 ? rewriter.getAffineConstantExpr(0)
-                                        : rewriter.getAffineDimExpr(it.index());
+      // Prefer producting identity maps whenever possible (i.e. no broadcasting
+      // needed) because some transforms (like reshape folding)
+      // do not support affine constant exprs.
+      bool requiresBroadcast =
+          (it.value() == 1 && resultType.getDimSize(it.index()) != 1);
+      auto affineExpr = requiresBroadcast
+                            ? rewriter.getAffineConstantExpr(0)
+                            : rewriter.getAffineDimExpr(it.index());
       affineExprs.push_back(affineExpr);
     }
     return AffineMap::get(rank, 0, affineExprs, rewriter.getContext());
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index 1d235092b71d55..f36f449da8dbc4 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -253,6 +253,26 @@ func.func @test_add_1d_broadcast_static_to_static(%arg0: tensor<1xf32>, %arg1: t
 
 // -----
 
+// CHECK: #[[$MAP:.+]] = affine_map<(d0) -> (d0)>
+// CHECK-LABEL: @test_add_1d_matching_no_broadcast
+// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
+// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
+func.func @test_add_1d_matching_no_broadcast(%arg0: tensor<1xf32>, %arg1: tensor<1xf32>) -> tensor<1xf32> {
+
+  // CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1xf32>
+  // CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP]], #[[$MAP]], #[[$MAP]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<1xf32>) outs(%[[VAL_0]] : tensor<1xf32>) {
+  // CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
+  // CHECK:   %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
+  // CHECK:   linalg.yield %[[VAL_4]] : f32
+  // CHECK: } -> tensor<1xf32>
+  %0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
+
+  // CHECK: return %[[RESULT]] : tensor<1xf32>
+  return %0 : tensor<1xf32>
+}
+
+// -----
+
 // CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>
 // CHECK-LABEL: @test_add_1d_matching_static
 // CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:

``````````

</details>


https://github.com/llvm/llvm-project/pull/123295


More information about the Mlir-commits mailing list