[Mlir-commits] [mlir] 929eb50 - [mlir] Rewrites for I2 to I8 signed and unsigned extension (#121298)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Jan 15 00:12:42 PST 2025


Author: ziereis
Date: 2025-01-15T08:12:39Z
New Revision: 929eb500d4c9b3fff0693c49fd55c8093dc1ad62

URL: https://github.com/llvm/llvm-project/commit/929eb500d4c9b3fff0693c49fd55c8093dc1ad62
DIFF: https://github.com/llvm/llvm-project/commit/929eb500d4c9b3fff0693c49fd55c8093dc1ad62.diff

LOG: [mlir] Rewrites for I2 to I8 signed and unsigned extension (#121298)

Adds rewrites for i2 to i8 signed and unsigned extension, similar to the
ones that already exist for i4 to i8 conversion.

I use this for i6 quantized models, and this gives me roughly a 2x
speedup for an i6 4096x4096 dequantization-matmul on an AMD 5950x.

I didn't add the rewrite for i8 to i2 truncation because I currently
don't use it, but if this is needed, I can add it as well.

---------

Co-authored-by: Andrzej WarzyƄski <andrzej.warzynski at gmail.com>

Added: 
    

Modified: 
    mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
    mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
index d04f302200519e..a674a590091815 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorEmulateNarrowType.cpp
@@ -1090,15 +1090,20 @@ static LogicalResult alignedConversionPrecondition(PatternRewriter &rewriter,
   unsigned srcElemBitwidth = subByteVecType.getElementTypeBitWidth();
   unsigned dstElemBitwidth = dstType.getElementTypeBitWidth();
 
-  // Only {s}i4 -> (size_of({{s}i/f}) >= 8) are supported for now.
-  if (srcElemBitwidth != 4 || dstElemBitwidth < 8 ||
-      (dstElemBitwidth % srcElemBitwidth) != 0)
-    return rewriter.notifyMatchFailure(op, "Not a supported aligned case");
+  if (dstElemBitwidth < 8)
+    return rewriter.notifyMatchFailure(
+        op, "the bitwidth of dstType must be greater than or equal to 8");
+  if (dstElemBitwidth % srcElemBitwidth != 0)
+    return rewriter.notifyMatchFailure(op, "unaligned cases are not supported");
+  if (srcElemBitwidth != 2 && srcElemBitwidth != 4)
+    return rewriter.notifyMatchFailure(
+        op, "only src bitwidth of 2 or 4 is supported at this moment");
 
-  const int numSrcElemsPerDestElem = dstElemBitwidth / srcElemBitwidth;
-  if ((subByteVecType.getShape().back() % numSrcElemsPerDestElem) != 0)
+  const int numSrcElemsPerByte = 8 / srcElemBitwidth;
+  if ((subByteVecType.getShape().back() % numSrcElemsPerByte) != 0)
     return rewriter.notifyMatchFailure(
-        op, "Not an even number of i4 elements in trailing dim");
+        op, "the trailing dimension of the input vector of sub-bytes must be a "
+            "multiple of 8 / <sub-byte-width>");
 
   return success();
 }
@@ -1179,70 +1184,166 @@ Value BitCastRewriter::genericRewriteStep(
   return runningResult;
 }
 
-/// Rewrite the i4 -> i8 signed extension into a sequence of shuffles and
-/// bitwise ops that take advantage of high-level information to avoid leaving
-/// LLVM to scramble with peephole optimizations.
-static Value rewriteI4ToI8SignedExt(PatternRewriter &rewriter, Location loc,
-                                    Value srcValue) {
-  VectorType srcVecType = cast<VectorType>(srcValue.getType());
-  assert(srcVecType.getElementType().isSignlessInteger(4) &&
-         "Expected i4 type");
+/// Bitcasts the aligned `subByteVec` vector to a vector of i8.
+/// Where aligned means it satisfies the alignedConversionPreconditions.
+///
+/// Example:
+/// vector<16x16xi2> -> vector<16x4xi8>
+/// vector<16x16xi4> -> vector<16x8xi8>
+static Value bitcastSubByteVectorToI8(PatternRewriter &rewriter, Location loc,
+                                      Value subByteVec) {
+  auto srcVecType = cast<VectorType>(subByteVec.getType());
+  int64_t srcBitwidth = srcVecType.getElementType().getIntOrFloatBitWidth();
+  assert(8 % srcBitwidth == 0 &&
+         "Unsupported sub-byte type (not a divisor of i8)");
+  int64_t numSrcElemsPerByte = 8 / srcBitwidth;
+  SmallVector<int64_t> vecShape(srcVecType.getShape());
+  // Adjust last dimension of the vector, so the total size remains the same.
+  vecShape.back() = vecShape.back() / numSrcElemsPerByte;
+  auto i8VecType = VectorType::get(vecShape, rewriter.getI8Type());
+  return rewriter.create<vector::BitCastOp>(loc, i8VecType, subByteVec);
+}
 
-  // 1. Generate a bitcast vector<Xxi4> -> vector<X/2xi8>.
-  SmallVector<int64_t> i8VecShape = llvm::to_vector(srcVecType.getShape());
-  constexpr int64_t i4Toi8BitwidthFactor = 2;
-  i8VecShape.back() = i8VecShape.back() / i4Toi8BitwidthFactor;
-  auto i8VecType = VectorType::get(i8VecShape, rewriter.getI8Type());
-  Value i8Vector = rewriter.create<vector::BitCastOp>(loc, i8VecType, srcValue);
+/// Extracts a signed N-bit sequence from each element of a vector of bytes,
+/// starting at the specified bit index.
+/// The `bitIdx` starts at 0 from the LSB and moves to the left.
+///
+/// Example for a single element:
+/// Extract numBits=2 starting at bitIdx=2
+/// src     = [0 | 1 | 0 | 1 | 1 | 1 | 1 | 0]
+/// indices = [7 | 6 | 5 | 4 | 3 | 2 | 1 | 0]
+/// target  = [.   .   .   .   ^   ^   .   .]
+///
+/// The target sequence is [11](decimal=-1) as signed 2-bit integer.
+/// So the result should be [11 11 11 11](decimal=-1) as signed 8-bit integer.
+///
+/// src     =                         [01 01 11 10]
+/// shl     = arith.shl(src, 4)    -> [11 10 00 00]
+/// result  = arith.shrsi(shl, 6)  -> [11 11 11 11]
+static Value extractNBitsPerByteAndSignExtendToI8(PatternRewriter &rewriter,
+                                                  Location loc, Value src,
+                                                  int bitIdx, int numBits) {
+  auto srcType = cast<VectorType>(src.getType());
+  Value shl = src;
+  int8_t bitsToShiftLeft = 8 - numBits - bitIdx;
+  assert(bitIdx >= 0 && bitsToShiftLeft >= 0 && numBits > 0 && numBits <= 8 &&
+         "Invalid bitIdx range");
+  if (bitsToShiftLeft != 0) {
+    Value shiftLeftValues = rewriter.create<arith::ConstantOp>(
+        loc, DenseElementsAttr::get(srcType, bitsToShiftLeft));
+    shl = rewriter.create<arith::ShLIOp>(loc, src, shiftLeftValues);
+  }
 
-  // 2. Extend i4 elements to i8 elements using shifts. Low i4 elemens of each
-  // byte are place in one vector and the high i4 elements in another vector.
-  constexpr int8_t bitsToShift = 4;
-  auto shiftValues = rewriter.create<arith::ConstantOp>(
-      loc, DenseElementsAttr::get(i8VecType, bitsToShift));
-  Value shl = rewriter.create<arith::ShLIOp>(loc, i8Vector, shiftValues);
-  Value low = rewriter.create<arith::ShRSIOp>(loc, shl, shiftValues);
-  Value high = rewriter.create<arith::ShRSIOp>(loc, i8Vector, shiftValues);
+  int8_t bitsToShiftRight = 8 - numBits;
+  Value shiftRightValues = rewriter.create<arith::ConstantOp>(
+      loc, DenseElementsAttr::get(srcType, bitsToShiftRight));
+  Value shr = rewriter.create<arith::ShRSIOp>(loc, shl, shiftRightValues);
+  return shr;
+}
 
-  // 3. Interleave low and high i8 elements.
-  return rewriter.create<vector::InterleaveOp>(loc, low, high);
+/// Extracts an unsigned N-bit sequence from each element of a vector of bytes,
+/// starting at the specified bit index.
+/// The `bitIdx` starts at 0 from the LSB and moves to the left.
+///
+/// Example for a single element:
+/// Extract numBits=2 starting at bitIdx=2
+/// src     = [0 | 1 | 0 | 1 | 1 | 0 | 1 | 0]
+/// indices = [7 | 6 | 5 | 4 | 3 | 2 | 1 | 0]
+/// target  = [.   .   .   .   ^   ^   .   .]
+///
+/// The target sequence is [10](decimal=2) as unsigned 2-bit integer.
+/// So the result should be [00 00 00 10](decimal=2) as unsigned 8-bit integer.
+///
+/// src                            = [01 01 10 10]
+/// mask                           = [00 00 00 11]
+/// shr    = arith.shrui(src, 2)   = [00 01 01 10]
+/// result = arith.andi(shr, mask) = [00 00 00 10]
+/// NOTE: Similarly to extractNBitsPerByteAndSignExtendToI8, this could be
+/// achieved by using arith::ShLIOp + arith::ShRUIOp instead of the masking.
+/// However, by using arith::ShRUIOp + arith::AndIOp, we are eliminating shift
+/// left when the index is 0.
+static Value extractNBitsPerByteAndExtendToI8(PatternRewriter &rewriter,
+                                              Location loc, Value src,
+                                              int bitIdx, int numBits) {
+  assert(bitIdx >= 0 && bitIdx <= 8 - numBits && numBits > 0 && numBits <= 8 &&
+         "Invalid bitIdx range");
+  auto srcType = cast<VectorType>(src.getType());
+  int8_t bitsToShiftRight = bitIdx;
+  Value shr = src;
+  if (bitsToShiftRight != 0) {
+    Value shiftRightValues = rewriter.create<arith::ConstantOp>(
+        loc, DenseElementsAttr::get(srcType, bitsToShiftRight));
+    shr = rewriter.create<arith::ShRUIOp>(loc, src, shiftRightValues);
+  }
+  if (bitIdx + numBits == 8) {
+    return shr;
+  }
+  uint8_t lowBitsMask = (1 << numBits) - 1;
+  Value lowBitsMaskValues = rewriter.create<arith::ConstantOp>(
+      loc, DenseElementsAttr::get(srcType, lowBitsMask));
+  return rewriter.create<arith::AndIOp>(loc, shr, lowBitsMaskValues);
 }
 
-/// Rewrite the i4 -> i8 unsigned extension into a sequence of shuffles and
-/// bitwise ops that take advantage of high-level information to avoid leaving
-/// LLVM to scramble with peephole optimizations.
-static Value rewriteI4ToI8UnsignedExt(PatternRewriter &rewriter, Location loc,
-                                      Value srcValue) {
-  VectorType srcVecType = cast<VectorType>(srcValue.getType());
+using ExtractNBitsFn =
+    std::function<Value(PatternRewriter &, Location, Value, int, int)>;
+
+/// Rewrite the i4 -> i8  extension into a sequence of shuffles and
+/// bitwise ops to avoid leaving LLVM to scramble with peephole optimizations.
+static Value rewriteI4ToI8Ext(PatternRewriter &rewriter, Location loc,
+                              Value srcValue, const ExtractNBitsFn &extFn) {
+  auto srcVecType = cast<VectorType>(srcValue.getType());
   assert(srcVecType.getElementType().isSignlessInteger(4) &&
          "Expected i4 type");
 
   // 1. Generate a bitcast vector<Xxi4> -> vector<X/2xi8>.
-  SmallVector<int64_t> i8VecShape = llvm::to_vector(srcVecType.getShape());
-  constexpr int64_t i4Toi8BitwidthFactor = 2;
-  i8VecShape.back() = i8VecShape.back() / i4Toi8BitwidthFactor;
-  auto i8VecType = VectorType::get(i8VecShape, rewriter.getI8Type());
-  Value i8Vector = rewriter.create<vector::BitCastOp>(loc, i8VecType, srcValue);
-
-  // 2 Extend the i4 elements using shifts & masking. Low i4 elements of each
-  //  byte are placed in one vector and the high i4 elements in another vector.
-  constexpr uint8_t lowBitsMask = 15; // Equivalent to [00001111] bit mask
-  auto lowBitsMaskValues = rewriter.create<arith::ConstantOp>(
-      loc, DenseElementsAttr::get(i8VecType, lowBitsMask));
-  Value low = rewriter.create<arith::AndIOp>(loc, i8VecType, i8Vector,
-                                             lowBitsMaskValues);
-  constexpr int8_t highBitsToShift = 4;
-  auto highShiftValues = rewriter.create<arith::ConstantOp>(
-      loc, DenseElementsAttr::get(i8VecType, highBitsToShift));
-  Value high = rewriter.create<arith::ShRUIOp>(loc, i8Vector, highShiftValues);
+  Value i8Vector = bitcastSubByteVectorToI8(rewriter, loc, srcValue);
+
+  // 2. Extend i4 elements to i8 elements. Low i4 elemens of each
+  // byte are place in one vector and the high i4 elements in another vector.
+  Value low = extFn(rewriter, loc, i8Vector, 0, 4);
+  Value high = extFn(rewriter, loc, i8Vector, 4, 4);
 
   // 3. Interleave low and high i8 elements.
   return rewriter.create<vector::InterleaveOp>(loc, low, high);
 }
 
+/// Rewrite the i2 -> i8  extension into a sequence of shuffles and
+/// bitwise ops to avoid leaving LLVM to scramble with peephole optimizations.
+static Value rewriteI2ToI8Ext(PatternRewriter &rewriter, Location loc,
+                              Value srcValue, const ExtractNBitsFn &extFn) {
+  VectorType srcVecType = cast<VectorType>(srcValue.getType());
+  assert(srcVecType.getElementType().isSignlessInteger(2) &&
+         "Expected i2 type");
+
+  // 1. Generate a bitcast vector<Xxi2> -> vector<X/2xi8>.
+  Value i8Vector = bitcastSubByteVectorToI8(rewriter, loc, srcValue);
+
+  // 2. Extract each i2 element
+  // Positon 0 (bits 0-1)
+  Value vec0 = extFn(rewriter, loc, i8Vector, 0, 2);
+  // Position 1 (bits 2-3)
+  Value vec1 = extFn(rewriter, loc, i8Vector, 2, 2);
+  // Position 2 (bits 4-5)
+  Value vec2 = extFn(rewriter, loc, i8Vector, 4, 2);
+  // Position 3 (bits 6-7)
+  Value vec3 = extFn(rewriter, loc, i8Vector, 6, 2);
+
+  // 3. Interleave all 4 elements by first interleaving
+  // even elements and then odd
+  // vec0  = [0,0,0,0],...
+  // vec1  = [1,1,1,1],...
+  // vec2  = [2,2,2,2],...
+  // vec3  = [3,3,3,3],...
+  // 02    = [0,2,0,2,0,2,0,2],...
+  // 13    = [1,3,1,3,1,3,1,3],...
+  // 0213  = [0,1,2,3,...],...
+  Value interleave02 = rewriter.create<vector::InterleaveOp>(loc, vec0, vec2);
+  Value interleave13 = rewriter.create<vector::InterleaveOp>(loc, vec1, vec3);
+  return rewriter.create<vector::InterleaveOp>(loc, interleave02, interleave13);
+}
+
 /// Rewrite the i8 -> i4 truncation into a deinterleave and series of bitwise
-/// ops that take advantage of high-level information to avoid leaving LLVM to
-/// scramble with peephole optimizations.
+/// ops to avoid leaving LLVM to scramble with peephole optimizations.
 static Value rewriteI8ToI4Trunc(PatternRewriter &rewriter, Location loc,
                                 Value srcValue) {
   VectorType srcVecType = cast<VectorType>(srcValue.getType());
@@ -1443,13 +1544,19 @@ struct RewriteAlignedSubByteIntExt : OpRewritePattern<ConversionOpType> {
       return failure();
 
     // Perform the rewrite.
+    Location loc = conversionOp.getLoc();
+    const auto &extFn = isSigned ? extractNBitsPerByteAndSignExtendToI8
+                                 : extractNBitsPerByteAndExtendToI8;
     Value subByteExt;
-    if (isSigned) {
-      subByteExt =
-          rewriteI4ToI8SignedExt(rewriter, conversionOp.getLoc(), srcValue);
-    } else {
-      subByteExt =
-          rewriteI4ToI8UnsignedExt(rewriter, conversionOp.getLoc(), srcValue);
+    switch (srcVecType.getElementType().getIntOrFloatBitWidth()) {
+    case 2:
+      subByteExt = rewriteI2ToI8Ext(rewriter, loc, srcValue, extFn);
+      break;
+    case 4:
+      subByteExt = rewriteI4ToI8Ext(rewriter, loc, srcValue, extFn);
+      break;
+    default:
+      return failure();
     }
 
     // Finalize the rewrite.
@@ -1490,6 +1597,10 @@ struct RewriteAlignedSubByteIntTrunc : OpRewritePattern<arith::TruncIOp> {
     if (failed(commonConversionPrecondition(rewriter, srcVecType, truncOp)))
       return failure();
 
+    // TODO: Add support for truncating to i2.
+    if (dstVecType.getElementType().getIntOrFloatBitWidth() == 2)
+      return failure();
+
     // Check general alignment preconditions. We invert the src/dst type order
     // to reuse the existing precondition logic.
     if (failed(alignedConversionPrecondition(rewriter, dstVecType, srcVecType,

diff  --git a/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir b/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
index 210025e30d7db5..8d28f248e392d2 100644
--- a/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
+++ b/mlir/test/Dialect/Vector/vector-rewrite-narrow-types.mlir
@@ -193,6 +193,25 @@ func.func @f3ext(%a: vector<5xi8>) -> vector<8xi17> {
   return %1 : vector<8xi17>
 }
 
+
+// Negative test - the trailing dim 1 is not a multiple of 2 (i.e. 8 / 4).
+// CHECK-LABEL: func.func @unaligned_extsi_i4_to_i8(
+func.func @unaligned_extsi_i4_to_i8(%a: vector<1xi4>) -> vector<1xi8> {
+  // CHECK-NOT: arith.bitcast
+  // CHECK: arith.extsi %[[IN:.*]] : vector<1xi4> to vector<1xi8>
+  %0 = arith.extsi %a : vector<1xi4> to vector<1xi8>
+  return %0 : vector<1xi8>
+}
+
+// Negative test - the trailing dim 2 is not a multiple of 4 (i.e. 8 / 2).
+// CHECK-LABEL: func.func @unaligned_extsi_i2_to_i8(
+func.func @unaligned_extsi_i2_to_i8(%a: vector<2xi2>) -> vector<2xi8> {
+  // CHECK-NOT: arith.bitcast
+  // CHECK: arith.extsi %[[IN:.*]] : vector<2xi2> to vector<2xi8>
+  %0 = arith.extsi %a : vector<2xi2> to vector<2xi8>
+  return %0 : vector<2xi8>
+}
+
 // CHECK-LABEL: func.func @aligned_extsi_i4_to_i8(
 func.func @aligned_extsi_i4_to_i8(%a: vector<8xi4>) -> vector<8xi8> {
 // CHECK-SAME:    %[[IN:.*]]: vector<8xi4>) -> vector<8xi8> {
@@ -206,6 +225,31 @@ func.func @aligned_extsi_i4_to_i8(%a: vector<8xi4>) -> vector<8xi8> {
   return %0 : vector<8xi8>
 }
 
+// CHECK-LABEL: func.func @aligned_extsi_i2_to_i8(
+func.func @aligned_extsi_i2_to_i8(%a: vector<8xi2>) -> vector<8xi8> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8xi2>) -> vector<8xi8> {
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// Extract bits 0-1
+// CHECK:           %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<2xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<2xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<2xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK:           %[[RESULT:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+  %0 = arith.extsi %a : vector<8xi2> to vector<8xi8>
+  return %0 : vector<8xi8>
+}
+
 // CHECK-LABEL: func.func @aligned_extsi_i4_to_i32(
 func.func @aligned_extsi_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
 // CHECK-SAME:    %[[IN:.*]]: vector<8xi4>) -> vector<8xi32> {
@@ -220,8 +264,34 @@ func.func @aligned_extsi_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
   return %0 : vector<8xi32>
 }
 
-// CHECK-LABEL: func.func @aligned_extsi_2d(
-func.func @aligned_extsi_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
+// CHECK-LABEL: func.func @aligned_extsi_i2_to_i32(
+func.func @aligned_extsi_i2_to_i32(%a: vector<8xi2>) -> vector<8xi32> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8xi2>) -> vector<8xi32> {
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// Extract bits 0-1
+// CHECK:           %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<2xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<2xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<2xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+// CHECK:           %[[RESULT:.*]] = arith.extsi %[[INTERLEAVE]] : vector<8xi8> to vector<8xi32>
+  %0 = arith.extsi %a : vector<8xi2> to vector<8xi32>
+  return %0 : vector<8xi32>
+}
+
+// CHECK-LABEL: func.func @aligned_extsi_i4_to_i32_2d(
+func.func @aligned_extsi_i4_to_i32_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
 // CHECK-SAME:    %[[IN:.*]]: vector<8x32xi4>) -> vector<8x32xi32> {
 // CHECK:           %[[I4_BITS:.*]] = arith.constant dense<4> : vector<8x16xi8>
 // CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi4> to vector<8x16xi8>
@@ -234,6 +304,32 @@ func.func @aligned_extsi_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
   return %0 : vector<8x32xi32>
 }
 
+// CHECK-LABEL: func.func @aligned_extsi_i2_to_i32_2d(
+func.func @aligned_extsi_i2_to_i32_2d(%a: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<8x8xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<8x8xi8>
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<8x8xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi2> to vector<8x8xi8>
+// Extract bits 0-1
+// CHECK:           %[[SHL_6:.*]] = arith.shli %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK:           %[[ELEM0:.*]] = arith.shrsi %[[SHL_6]], %[[CST_6]] : vector<8x8xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHL_4:.*]] = arith.shli %[[BITCAST]], %[[CST_4]] : vector<8x8xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.shrsi %[[SHL_4]], %[[CST_6]] : vector<8x8xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHL_2:.*]] = arith.shli %[[BITCAST]], %[[CST_2]] : vector<8x8xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.shrsi %[[SHL_2]], %[[CST_6]] : vector<8x8xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrsi %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<8x16xi8>
+// CHECK:           %[[RESULT:.*]] = arith.extsi %[[INTERLEAVE]] : vector<8x32xi8> to vector<8x32xi32>
+  %0 = arith.extsi %a : vector<8x32xi2> to vector<8x32xi32>
+  return %0 : vector<8x32xi32>
+}
+
 
 // CHECK-LABEL: func.func @aligned_trunci_i8_to_i4(
 func.func @aligned_trunci_i8_to_i4(%a: vector<8xi8>) -> vector<8xi4> {
@@ -292,6 +388,13 @@ func.func @aligned_trunci_nd(%a: vector<3x8x32xi32>) -> vector<3x8x32xi4> {
   return %0 : vector<3x8x32xi4>
 }
 
+func.func @aligned_trunci_i8_to_i2_no_match(%a: vector<8xi8>) -> vector<8xi2> {
+  // CHECK-NOT: arith.bitcast
+  // CHECK: arith.trunci %[[IN:.*]] : vector<8xi8> to vector<8xi2>
+  %0 = arith.trunci %a : vector<8xi8> to vector<8xi2>
+  return %0 : vector<8xi2>
+}
+
 // CHECK-LABEL: func.func @aligned_extui_i4_to_i8(
 func.func @aligned_extui_i4_to_i8(%a: vector<8xi4>) -> vector<8xi8> {
 // CHECK-SAME:                             %[[IN:.*]]: vector<8xi4>) -> vector<8xi8> {
@@ -305,6 +408,31 @@ func.func @aligned_extui_i4_to_i8(%a: vector<8xi4>) -> vector<8xi8> {
   return %0 : vector<8xi8>
 }
 
+// CHECK-LABEL: func.func @aligned_extui_i2_to_i8(
+func.func @aligned_extui_i2_to_i8(%a: vector<8xi2>) -> vector<8xi8> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8xi2>) -> vector<8xi8> {
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK:           %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<2xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// Extract bits 0-1
+// CHECK:           %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK:           %[[RESULT:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+  %0 = arith.extui %a : vector<8xi2> to vector<8xi8>
+  return %0 : vector<8xi8>
+}
+
 // CHECK-LABEL: func.func @aligned_extui_i4_to_i32(
 func.func @aligned_extui_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
 // CHECK-SAME:                             %[[IN:.*]]: vector<8xi4>) -> vector<8xi32> {
@@ -319,8 +447,34 @@ func.func @aligned_extui_i4_to_i32(%a: vector<8xi4>) -> vector<8xi32> {
   return %0 : vector<8xi32>
 }
 
-// CHECK-LABEL: func.func @aligned_extui_2d(
-func.func @aligned_extui_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
+// CHECK-LABEL: func.func @aligned_extui_i2_to_i32(
+func.func @aligned_extui_i2_to_i32(%a: vector<8xi2>) -> vector<8xi32> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8xi2>) -> vector<8xi32> {
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<2xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<2xi8>
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<2xi8>
+// CHECK:           %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<2xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8xi2> to vector<2xi8>
+// Extract bits 0-1
+// CHECK:           %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<2xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<2xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<2xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<2xi8>
+// CHECK:           %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<4xi8>
+// CHECK:           %[[RESULT:.*]] = arith.extui %[[INTERLEAVE]] : vector<8xi8> to vector<8xi32>
+  %0 = arith.extui %a : vector<8xi2> to vector<8xi32>
+  return %0 : vector<8xi32>
+}
+
+// CHECK-LABEL: func.func @aligned_extui_i4_to_i32_2d(
+func.func @aligned_extui_i4_to_i32_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
 // CHECK-SAME:                                %[[VAL_0:.*]]: vector<8x32xi4>) -> vector<8x32xi32> {
 // CHECK:           %[[I4_BITS:.*]] = arith.constant dense<4> : vector<8x16xi8>
 // CHECK:           %[[LOWBITS_MASK:.*]] = arith.constant dense<15> : vector<8x16xi8>
@@ -333,6 +487,32 @@ func.func @aligned_extui_2d(%a: vector<8x32xi4>) -> vector<8x32xi32> {
   return %0 : vector<8x32xi32>
 }
 
+// CHECK-LABEL: func.func @aligned_extui_i2_to_i32_2d(
+func.func @aligned_extui_i2_to_i32_2d(%a: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK-SAME:      %[[IN:.*]]: vector<8x32xi2>) -> vector<8x32xi32> {
+// CHECK:           %[[CST_6:.*]] = arith.constant dense<6> : vector<8x8xi8>
+// CHECK:           %[[CST_4:.*]] = arith.constant dense<4> : vector<8x8xi8>
+// CHECK:           %[[CST_2:.*]] = arith.constant dense<2> : vector<8x8xi8>
+// CHECK:           %[[LOWBITS_MASK:.*]] = arith.constant dense<3> : vector<8x8xi8>
+// CHECK:           %[[BITCAST:.*]] = vector.bitcast %[[IN]] : vector<8x32xi2> to vector<8x8xi8>
+// Extract bits 0-1
+// CHECK:           %[[ELEM0:.*]] = arith.andi %[[BITCAST]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// Extract bits 2-3
+// CHECK:           %[[SHR_2:.*]] = arith.shrui %[[BITCAST]], %[[CST_2]] : vector<8x8xi8>
+// CHECK:           %[[ELEM1:.*]] = arith.andi %[[SHR_2]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// Extract bits 4-5
+// CHECK:           %[[SHR_4:.*]] = arith.shrui %[[BITCAST]], %[[CST_4]] : vector<8x8xi8>
+// CHECK:           %[[ELEM2:.*]] = arith.andi %[[SHR_4]], %[[LOWBITS_MASK]] : vector<8x8xi8>
+// Extract bits 6-7
+// CHECK:           %[[ELEM3:.*]] = arith.shrui %[[BITCAST]], %[[CST_6]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE02:.*]] = vector.interleave %[[ELEM0]], %[[ELEM2]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE13:.*]] = vector.interleave %[[ELEM1]], %[[ELEM3]] : vector<8x8xi8>
+// CHECK:           %[[INTERLEAVE:.*]] = vector.interleave %[[INTERLEAVE02]], %[[INTERLEAVE13]] : vector<8x16xi8>
+// CHECK:           %[[RESULT:.*]] = arith.extui %[[INTERLEAVE]] : vector<8x32xi8> to vector<8x32xi32>
+  %0 = arith.extui %a : vector<8x32xi2> to vector<8x32xi32>
+  return %0 : vector<8x32xi32>
+}
+
 // CHECK-LABEL: func.func @aligned_sitofp(
 func.func @aligned_sitofp(%a: vector<8xi4>) -> vector<8xf32> {
 // CHECK-SAME:    %[[IN:.*]]: vector<8xi4>) -> vector<8xf32> {


        


More information about the Mlir-commits mailing list