[Mlir-commits] [mlir] [mlir][linalg] Handle reassociationIndices correctly for 0D tensor (PR #121683)
Longsheng Mou
llvmlistbot at llvm.org
Tue Jan 7 06:29:45 PST 2025
https://github.com/CoTinker updated https://github.com/llvm/llvm-project/pull/121683
>From 72ebc8086c7ef5b2570e5026fe6a97e3abb607d5 Mon Sep 17 00:00:00 2001
From: Longsheng Mou <longshengmou at gmail.com>
Date: Sun, 5 Jan 2025 16:29:48 +0800
Subject: [PATCH] [mlir][linalg] Handle reassociationIndices correctly for 0D
tensor
This PR fixes a bug where a value is assigned to a 0-sized
reassociationIndices, preventing a crash.
---
.../Conversion/TosaToLinalg/TosaToLinalg.cpp | 25 +++++++++++--------
.../TosaToLinalg/tosa-to-linalg.mlir | 23 +++++++++++++++++
2 files changed, 37 insertions(+), 11 deletions(-)
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index 88e544c4e4b5f1..1d7ead16e8b631 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -600,30 +600,33 @@ static Value createLinalgBodyCalculationForElementwiseOp(
static Value expandRank(PatternRewriter &rewriter, Location loc, Value tensor,
int64_t rank) {
// No need to expand if we are already at the desired rank
- auto shapedType = dyn_cast<ShapedType>(tensor.getType());
- assert(shapedType && shapedType.hasRank() && "expected a ranked shaped type");
- int64_t numExtraDims = rank - shapedType.getRank();
+ auto tensorType = dyn_cast<RankedTensorType>(tensor.getType());
+ assert(tensorType && "expected a ranked tensor type");
+ int64_t tensorRank = tensorType.getRank();
+ int64_t numExtraDims = rank - tensorRank;
assert(numExtraDims >= 0 && "cannot expand tensor to a lower rank");
if (!numExtraDims)
return tensor;
// Compute reassociation indices
- SmallVector<SmallVector<int64_t, 2>> reassociationIndices(
- shapedType.getRank());
+ SmallVector<ReassociationIndices> reassociationIndices(tensorRank);
int64_t index = 0;
- for (index = 0; index <= numExtraDims; index++)
- reassociationIndices[0].push_back(index);
- for (size_t position = 1; position < reassociationIndices.size(); position++)
- reassociationIndices[position].push_back(index++);
+ if (tensorRank != 0) {
+ for (index = 0; index <= numExtraDims; index++)
+ reassociationIndices[0].push_back(index);
+ for (size_t position = 1; position < reassociationIndices.size();
+ position++)
+ reassociationIndices[position].push_back(index++);
+ }
// Compute result type
SmallVector<int64_t> resultShape;
for (index = 0; index < numExtraDims; index++)
resultShape.push_back(1);
- for (auto size : shapedType.getShape())
+ for (auto size : tensorType.getShape())
resultShape.push_back(size);
auto resultType =
- RankedTensorType::get(resultShape, shapedType.getElementType());
+ RankedTensorType::get(resultShape, tensorType.getElementType());
// Emit 'tensor.expand_shape' op
return rewriter.create<tensor::ExpandShapeOp>(loc, resultType, tensor,
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
index 265a75986c6c8d..c840fb8648d7b7 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir
@@ -100,6 +100,29 @@ func.func @test_add_0d(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
// -----
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, 0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (0, 0)>
+// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1) -> (d0, d1)>
+
+// CHECK-LABEL: func.func @test_add_0d_broadcast(
+// CHECK-SAME: %[[ARG0:.*]]: tensor<2x1xf32>,
+// CHECK-SAME: %[[ARG1:.*]]: tensor<f32>) -> tensor<2x1xf32> {
+// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[ARG1]] [] output_shape [1, 1] : tensor<f32> into tensor<1x1xf32>
+// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<2x1xf32>
+// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]], %[[EXPANDED]] : tensor<2x1xf32>, tensor<1x1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<2x1xf32>) {
+// CHECK: ^bb0(%[[IN0:.*]]: f32, %[[IN1:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK: %[[ADD:.*]] = arith.addf %[[IN0]], %[[IN1]] : f32
+// CHECK: linalg.yield %[[ADD]] : f32
+// CHECK: } -> tensor<2x1xf32>
+// CHECK: return %[[RESULT]] : tensor<2x1xf32>
+// CHECK: }
+func.func @test_add_0d_broadcast(%arg0: tensor<2x1xf32>, %arg1: tensor<f32>) -> tensor<2x1xf32> {
+ %0 = tosa.add %arg0, %arg1 : (tensor<2x1xf32>, tensor<f32>) -> tensor<2x1xf32>
+ return %0 : tensor<2x1xf32>
+}
+
+// -----
+
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_all_dynamic
More information about the Mlir-commits
mailing list