[Mlir-commits] [mlir] [mlir][tosa] Always generated pad_const and remove input_zp attr for PadOp (PR #129336)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Fri Feb 28 15:17:06 PST 2025


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir-tosa

Author: Jerry-Ge (Jerry-Ge)

<details>
<summary>Changes</summary>

Always generated pad_const and remove input_zp attr for PadOp

---

Patch is 36.88 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/129336.diff


14 Files Affected:

- (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td (-8) 
- (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h (+4) 
- (modified) mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td (+2-5) 
- (modified) mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp (+2-19) 
- (modified) mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp (-47) 
- (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+23-22) 
- (modified) mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp (+14-20) 
- (modified) mlir/test/Conversion/TosaToTensor/tosa-to-tensor.mlir (+15-10) 
- (modified) mlir/test/Dialect/Tosa/availability.mlir (+2-1) 
- (modified) mlir/test/Dialect/Tosa/canonicalize.mlir (+14-8) 
- (modified) mlir/test/Dialect/Tosa/invalid.mlir (+10-7) 
- (modified) mlir/test/Dialect/Tosa/ops.mlir (-8) 
- (modified) mlir/test/Dialect/Tosa/tosa-decompose-transpose-conv.mlir (+25-24) 
- (modified) mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir (+6-4) 


``````````diff
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
index ce17ad9362227..15def695f6a54 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOpBase.td
@@ -197,14 +197,6 @@ def Tosa_PadOpQuantInfoBuilder : OpBuilder<
                             input, paddings);
   }]>;
 
-def Tosa_ExplicitValuePadOpQuantInfoBuilder : OpBuilder<
-  (ins "Type":$outputType, "Value":$input, "Value":$paddings,
-       "Value":$pad_value),
-  [{
-    buildExplicitValuePadOpWithQuantInfo($_builder, $_state, outputType,
-                                         input, paddings, pad_value);
-  }]>;
-
 // Wrapper over base I32EnumAttr to set common fields.
 class Tosa_I32Enum<string name, string description, list<I32EnumAttrCase> cases>
      : I32EnumAttr<name, description, cases> {
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
index 344a54f0bb1c9..f0797f97fd842 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
@@ -168,6 +168,10 @@ namespace tosa {
 std::optional<Value> createZeroPointTensor(OpBuilder &builder, Location loc,
                                            Type srcElemType, int64_t zp = 0);
 
+// Create a pad-const const tensor with value of `val` of required data-type
+std::optional<Value> createPadConstTensor(OpBuilder &builder, Location loc,
+  Value src, int32_t val = 0);
+
 } // namespace tosa
 } // namespace mlir
 
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index abdd8347cb2b5..aedea883396f8 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -1882,8 +1882,7 @@ def Tosa_PadOp : Tosa_InferShapedTypeOp<"pad"> {
   let arguments = (ins
     Tosa_RankedTensor:$input1,
     Tosa_Shape:$padding,
-    Optional<Tosa_ScalarTensor>:$pad_const,
-    OptionalAttr<I32Attr>:$input_zp
+    Tosa_ScalarTensor:$pad_const
   );
 
   let results = (outs
@@ -1895,10 +1894,8 @@ def Tosa_PadOp : Tosa_InferShapedTypeOp<"pad"> {
     Extension<[Tosa_EXT_FP8E4M3, Tosa_EXT_FP8E5M2, Tosa_EXT_BF16]>,
   ];
 
-  let builders = [Tosa_PadOpQuantInfoBuilder,
-                  Tosa_ExplicitValuePadOpQuantInfoBuilder];
+  let builders = [Tosa_PadOpQuantInfoBuilder];
 
-  let hasCanonicalizer = 1;
   let hasFolder = 1;
   let hasVerifier = 1;
 }
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index 7f029d56e2582..6a65904272991 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -350,29 +350,12 @@ class PadConverter : public OpConversionPattern<tosa::PadOp> {
     }
 
     ShapedType inputTy = cast<ShapedType>(input.getType());
-    Type elementTy = inputTy.getElementType();
     int64_t rank = inputTy.getRank();
 
     // Setup the default constantAttr.
 
-    Value padConstant;
-
-    if (padOp.getPadConst()) {
-      padConstant = rewriter.createOrFold<tensor::ExtractOp>(
-          loc, padOp.getPadConst(), ValueRange({}));
-    } else {
-      TypedAttr constantAttr;
-      if (isa<FloatType>(elementTy)) {
-        constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
-      } else if (isa<IntegerType>(elementTy) && !padOp.getInputZpAttr()) {
-        constantAttr = rewriter.getIntegerAttr(elementTy, 0);
-      } else if (isa<IntegerType>(elementTy) && padOp.getInputZpAttr()) {
-        int64_t value = padOp.getInputZpAttr().getInt();
-        constantAttr = rewriter.getIntegerAttr(elementTy, value);
-      }
-      if (constantAttr)
-        padConstant = rewriter.create<arith::ConstantOp>(loc, constantAttr);
-    }
+    Value padConstant = rewriter.createOrFold<tensor::ExtractOp>(
+      loc, padOp.getPadConst(), ValueRange({}));
 
     if (!padConstant) {
       return rewriter.notifyMatchFailure(
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 363b5958bc0fd..2c0376134b599 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -175,53 +175,6 @@ void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results,
   results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context);
 }
 
-struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
-  using OpRewritePattern::OpRewritePattern;
-
-  LogicalResult matchAndRewrite(tosa::PadOp op,
-                                PatternRewriter &rewriter) const override {
-    if (op.getPadConst())
-      return failure();
-
-    auto input = op.getInput1();
-    auto padding = op.getPadding();
-
-    ShapedType inputTy = llvm::cast<ShapedType>(input.getType());
-    Type elementTy = inputTy.getElementType();
-
-    Attribute constantAttr;
-    if (llvm::isa<FloatType>(elementTy)) {
-      constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
-    } else if (llvm::isa<IntegerType>(elementTy) && !op.getInputZpAttr()) {
-      constantAttr = rewriter.getIntegerAttr(elementTy, 0);
-    } else if (llvm::isa<IntegerType>(elementTy) && op.getInputZpAttr()) {
-      int64_t value = op.getInputZpAttr().getInt();
-      constantAttr = rewriter.getIntegerAttr(elementTy, value);
-    }
-
-    if (!constantAttr) {
-      return rewriter.notifyMatchFailure(
-          op,
-          "tosa.pad to linalg lowering encountered an unknown element type");
-    }
-
-    auto denseAttr = DenseElementsAttr::get(
-        RankedTensorType::get({1}, elementTy), constantAttr);
-    auto constantVal = rewriter.create<tosa::ConstOp>(
-        op.getLoc(), denseAttr.getType(), denseAttr);
-
-    rewriter.replaceOpWithNewOp<tosa::PadOp>(
-        op, op.getType(), ValueRange{input, padding, constantVal},
-        op->getAttrs());
-    return success();
-  }
-};
-
-void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
-                                        MLIRContext *context) {
-  results.add<MaterializePadValue>(context);
-}
-
 struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> {
   using OpRewritePattern::OpRewritePattern;
 
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 54f9fa917f2e0..a76a687c3f1eb 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -214,6 +214,23 @@ void mlir::tosa::printTypeOrAttr(OpAsmPrinter &p, Operation *op, TypeAttr type,
   }
 }
 
+// Create a pad-const const tensor with value of `val` of required data-type
+std::optional<Value> mlir::tosa::createPadConstTensor(OpBuilder &builder,
+                                                      Location loc, Value src,
+                                                      int32_t val) {
+  auto const srcType = getElementTypeOrSelf(src);
+  auto const srcElemType = getElementTypeOrSelf(src);
+  auto const padConstType = mlir::RankedTensorType::get({1}, srcType);
+  auto const padConstEType = mlir::RankedTensorType::get({1}, srcElemType);
+  auto const pad_const_attr{
+      llvm::isa<FloatType>(srcElemType)
+          ? DenseElementsAttr::get(padConstEType,
+                                   builder.getFloatAttr(srcElemType, val))
+          : DenseElementsAttr::get(padConstEType,
+                                   builder.getIntegerAttr(srcElemType, val))};
+  return builder.create<tosa::ConstOp>(loc, padConstType, pad_const_attr);
+}
+
 //===----------------------------------------------------------------------===//
 // Tosa utilities.
 //===----------------------------------------------------------------------===//
@@ -679,30 +696,14 @@ static void buildUnaryOpWithQuantInfo(OpBuilder &builder,
 static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
                                     Type outputType, Value input,
                                     Value paddings) {
-  result.addOperands({input, paddings});
-  auto quantAttr = buildPadOpQuantizationAttr(builder, input);
+  const Location loc{result.location};
+  int32_t zp{0};
+  auto const quantAttr = buildPadOpQuantizationAttr(builder, input);
   if (quantAttr) {
-    result.addAttribute("input_zp",
-                        builder.getI32IntegerAttr(
-                            static_cast<int32_t>(quantAttr.getInputZp())));
-  }
-  result.types.push_back(outputType);
-}
-
-/// This builder is called on TOSA pad operator when an explicit pad_const
-/// value is passed in. It also optionally constructs quantization_attr.
-static void buildExplicitValuePadOpWithQuantInfo(OpBuilder &builder,
-                                                 OperationState &result,
-                                                 Type outputType, Value input,
-                                                 Value paddings,
-                                                 Value padConst) {
-  result.addOperands({input, paddings, padConst});
-  auto quantAttr = buildPadOpQuantizationAttr(builder, input);
-  if (quantAttr) {
-    result.addAttribute("input_zp",
-                        builder.getI32IntegerAttr(
-                            static_cast<int32_t>(quantAttr.getInputZp())));
+    zp = static_cast<int32_t>(quantAttr.getInputZp());
   }
+  auto const pad_const_op{createPadConstTensor(builder, loc, input, zp)};
+  result.addOperands({input, paddings, pad_const_op.value()});
   result.types.push_back(outputType);
 }
 
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
index 83bdbce5d1857..b629c3e7df510 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
@@ -148,16 +148,16 @@ class TransposeConvStridedConverter
       return rewriter.notifyMatchFailure(
           op, "zero point must be zero for non-int8 integer types");
 
-    if (weightZpVal != 0) {
-      weight = CreateOpAndInferShape<tosa::PadOp>(
-          rewriter, loc, UnrankedTensorType::get(weightETy), weight,
-          weightPaddingVal, nullptr, rewriter.getI32IntegerAttr(weightZpVal));
-
-    } else {
-      weight = CreateOpAndInferShape<tosa::PadOp>(
-          rewriter, loc, UnrankedTensorType::get(weightETy), weight,
-          weightPaddingVal);
-    }
+    // construct pad_const values from zp values
+    ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
+    Value const inputPadConst =
+        createPadConstTensor(builder, op->getLoc(), input, inputZpVal).value();
+    Value const weightPadConst =
+        createPadConstTensor(builder, op->getLoc(), input, weightZpVal).value();
+    
+    weight = CreateOpAndInferShape<tosa::PadOp>(
+        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
+        weightPaddingVal, weightPadConst);
 
     weightTy = cast<ShapedType>(weight.getType());
     weightHeight = weightTy.getDimSize(1);
@@ -169,7 +169,7 @@ class TransposeConvStridedConverter
         stride[0],      weightWidth / stride[1],
         stride[1],      inputChannels};
 
-    ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
+
     weight = CreateOpAndInferShape<tosa::ReshapeOp>(
         builder, UnrankedTensorType::get(weightETy), weight,
         getTosaConstShape(rewriter, loc, weightReshapeDims0));
@@ -206,15 +206,9 @@ class TransposeConvStridedConverter
     Value inputPaddingVal =
         getTosaConstShape(rewriter, op->getLoc(), inputPadding);
 
-    if (inputZpVal != 0) {
-      input = CreateOpAndInferShape<tosa::PadOp>(
-          rewriter, loc, UnrankedTensorType::get(inputETy), input,
-          inputPaddingVal, nullptr, rewriter.getI32IntegerAttr(inputZpVal));
-    } else {
-      input = CreateOpAndInferShape<tosa::PadOp>(
-          rewriter, loc, UnrankedTensorType::get(inputETy), input,
-          inputPaddingVal);
-    }
+    input = CreateOpAndInferShape<tosa::PadOp>(
+        rewriter, loc, UnrankedTensorType::get(inputETy), input,
+        inputPaddingVal, inputPadConst);
 
     // We use a zero bias as we need to broadcast the bias.
     auto zeroBias = rewriter.create<tosa::ConstOp>(
diff --git a/mlir/test/Conversion/TosaToTensor/tosa-to-tensor.mlir b/mlir/test/Conversion/TosaToTensor/tosa-to-tensor.mlir
index 6b7f622d3303f..c7a689f5a9ae9 100644
--- a/mlir/test/Conversion/TosaToTensor/tosa-to-tensor.mlir
+++ b/mlir/test/Conversion/TosaToTensor/tosa-to-tensor.mlir
@@ -498,35 +498,38 @@ func.func @slice_dyn(%arg0: tensor<?xf32>) -> (tensor<?xf32>) {
 // CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
 func.func @pad_float(%arg0 : tensor<1x2xf32>) -> (tensor<4x9xf32>) {
   %0 = tosa.const_shape {value = dense<[1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
   // CHECK-DAG: [[INDEX1:%.+]] = arith.constant 1 : index
   // CHECK-DAG: [[INDEX2:%.+]] = arith.constant 2 : index
   // CHECK-DAG: [[INDEX3:%.+]] = arith.constant 3 : index
   // CHECK-DAG: [[INDEX4:%.+]] = arith.constant 4 : index
-  // CHECK-DAG: [[CST:%.+]] = arith.constant 0.000000e+00 : f32
+  // CHECK-DAG: [[CST:%.+]] = arith.constant 3.140000e+00 : f32
   // CHECK: tensor.pad %[[ARG0]] low{{\[}}[[INDEX1]], [[INDEX3]]] high{{\[}}[[INDEX2]], [[INDEX4]]]  {
   // CHECK:   tensor.yield [[CST]]
   // CHECK: } : tensor<1x2xf32> to tensor<4x9xf32>
-  %1 = "tosa.pad"(%arg0, %0)  : (tensor<1x2xf32>, !tosa.shape<4>)  -> (tensor<4x9xf32>)
+  %1 = "tosa.pad"(%arg0, %0, %pad_const)  : (tensor<1x2xf32>, !tosa.shape<4>, tensor<1xf32>)  -> (tensor<4x9xf32>)
   return %1 : tensor<4x9xf32>
 }
 // -----
 
 func.func @pad_int(%arg0 : tensor<1x2xi32>) -> (tensor<4x9xi32>) {
   %0 = tosa.const_shape {value = dense<[1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
-  // CHECK: [[CST:%.+]] = arith.constant 0 : i32
+  %pad_const = "tosa.const"() {value = dense<3> : tensor<1xi32>} : () -> tensor<1xi32>
+  // CHECK: [[CST:%.+]] = arith.constant 3 : i32
   // CHECK: tensor.pad
   // CHECK:   tensor.yield [[CST]]
-  %1 = "tosa.pad"(%arg0, %0)  : (tensor<1x2xi32>, !tosa.shape<4>)  -> (tensor<4x9xi32>)
+  %1 = "tosa.pad"(%arg0, %0, %pad_const)  : (tensor<1x2xi32>, !tosa.shape<4>, tensor<1xi32>)  -> (tensor<4x9xi32>)
   return %1 : tensor<4x9xi32>
 }
 // -----
 
 func.func @pad_quant(%arg0 : tensor<1x2xi32>) -> (tensor<4x9xi32>) {
   %0 = tosa.const_shape {value = dense<[1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
-  // CHECK: [[CST:%.+]] = arith.constant 42 : i32
+  %pad_const = "tosa.const"() {value = dense<0> : tensor<1xi32>} : () -> tensor<1xi32>
+  // CHECK: [[CST:%.+]] = arith.constant 0 : i32
   // CHECK: tensor.pad
   // CHECK:   tensor.yield [[CST]]
-  %1 = "tosa.pad"(%arg0, %0) {input_zp = 42 : i32} : (tensor<1x2xi32>, !tosa.shape<4>)  -> (tensor<4x9xi32>)
+  %1 = "tosa.pad"(%arg0, %0, %pad_const) {input_zp = 42 : i32} : (tensor<1x2xi32>, !tosa.shape<4>, tensor<1xi32>)  -> (tensor<4x9xi32>)
   return %1 : tensor<4x9xi32>
 }
 
@@ -551,30 +554,32 @@ func.func @pad_float_explicit(%arg0 : tensor<1x2xf32>) -> (tensor<4x9xf32>) {
 
 func.func @pad_dyn_input(%arg0 : tensor<?x2xf32>) -> (tensor<?x9xf32>) {
   %0 = tosa.const_shape {value = dense<[1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
   // CHECK-DAG: [[INDEX1:%.+]] = arith.constant 1 : index
   // CHECK-DAG: [[INDEX2:%.+]] = arith.constant 2 : index
   // CHECK-DAG: [[INDEX3:%.+]] = arith.constant 3 : index
   // CHECK-DAG: [[INDEX4:%.+]] = arith.constant 4 : index
-  // CHECK-DAG: [[CST:%.+]] = arith.constant 0.000000e+00 : f32
+  // CHECK-DAG: [[CST:%.+]] = arith.constant 3.140000e+00 : f32
   // CHECK: tensor.pad %[[ARG0]] low{{\[}}[[INDEX1]], [[INDEX3]]] high{{\[}}[[INDEX2]], [[INDEX4]]]  {
   // CHECK:   tensor.yield [[CST]]
   // CHECK: } : tensor<?x2xf32> to tensor<?x9xf32>
-  %1 = "tosa.pad"(%arg0, %0)  : (tensor<?x2xf32>, !tosa.shape<4>)  -> (tensor<?x9xf32>)
+  %1 = "tosa.pad"(%arg0, %0, %pad_const)  : (tensor<?x2xf32>, !tosa.shape<4>, tensor<1xf32>)  -> (tensor<?x9xf32>)
   return %1 : tensor<?x9xf32>
 }
 // -----
 
 func.func @pad_dyn_padding(%arg0 : tensor<1x2xf32>) -> (tensor<?x9xf32>) {
   %0 = tosa.const_shape {value = dense<[-1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
   // CHECK-DAG: [[INDEX1:%.+]] = arith.constant -1 : index
   // CHECK-DAG: [[INDEX2:%.+]] = arith.constant 2 : index
   // CHECK-DAG: [[INDEX3:%.+]] = arith.constant 3 : index
   // CHECK-DAG: [[INDEX4:%.+]] = arith.constant 4 : index
-  // CHECK-DAG: [[CST:%.+]] = arith.constant 0.000000e+00 : f32
+  // CHECK-DAG: [[CST:%.+]] = arith.constant 3.140000e+00 : f32
   // CHECK: tensor.pad %[[ARG0]] low{{\[}}[[INDEX1]], [[INDEX3]]] high{{\[}}[[INDEX2]], [[INDEX4]]]  {
   // CHECK:   tensor.yield [[CST]]
   // CHECK: } : tensor<1x2xf32> to tensor<?x9xf32>
-  %1 = "tosa.pad"(%arg0, %0)  : (tensor<1x2xf32>, !tosa.shape<4>)  -> (tensor<?x9xf32>)
+  %1 = "tosa.pad"(%arg0, %0, %pad_const)  : (tensor<1x2xf32>, !tosa.shape<4>, tensor<1xf32>)  -> (tensor<?x9xf32>)
   return %1 : tensor<?x9xf32>
 }
 
diff --git a/mlir/test/Dialect/Tosa/availability.mlir b/mlir/test/Dialect/Tosa/availability.mlir
index 7324b0ea52e89..4203132e9f702 100644
--- a/mlir/test/Dialect/Tosa/availability.mlir
+++ b/mlir/test/Dialect/Tosa/availability.mlir
@@ -512,9 +512,10 @@ func.func @test_concat(%arg0: tensor<13x21x3xf32>, %arg1: tensor<13x21x3xf32>) -
 // CHECK-LABEL: pad
 func.func @test_pad(%arg0: tensor<13x21x3xf32>) -> tensor<13x21x3xf32> {
   %padding = tosa.const_shape {value = dense<0> : tensor<6xindex>} : () -> !tosa.shape<6>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
   // CHECK: profiles: [ [pro_int, pro_fp] ]
   // CHECK: extensions: [ [fp8e4m3, fp8e5m2, bf16] ]
-  %0 = tosa.pad %arg0, %padding : (tensor<13x21x3xf32>, !tosa.shape<6>) -> tensor<13x21x3xf32>
+  %0 = tosa.pad %arg0, %padding, %pad_const : (tensor<13x21x3xf32>, !tosa.shape<6>, tensor<1xf32>) -> tensor<13x21x3xf32>
   return %0 : tensor<13x21x3xf32>
 }
 
diff --git a/mlir/test/Dialect/Tosa/canonicalize.mlir b/mlir/test/Dialect/Tosa/canonicalize.mlir
index 175145f332f8e..f7874aaebee21 100644
--- a/mlir/test/Dialect/Tosa/canonicalize.mlir
+++ b/mlir/test/Dialect/Tosa/canonicalize.mlir
@@ -258,7 +258,8 @@ func.func @max_pool2d_is_noop(%arg0: tensor<10x1x1x3xf32>) -> tensor<10x1x1x3xf3
 func.func @pad_noop(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
   // CHECK: return %arg0
   %0 = tosa.const_shape { value = dense<0> : tensor<4xindex>} : () -> !tosa.shape<4>
-  %1 = tosa.pad %arg0, %0 : (tensor<?x?xf32>, !tosa.shape<4>) -> tensor<?x?xf32>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
+  %1 = tosa.pad %arg0, %0, %pad_const : (tensor<?x?xf32>, !tosa.shape<4>, tensor<1xf32>) -> tensor<?x?xf32>
   return %1 : tensor<?x?xf32>
 }
 
@@ -269,7 +270,8 @@ func.func @pad_noop_padding_mismatch_nofold(%arg0: tensor<?x?xf32>) -> tensor<?x
   // CHECK: %[[PAD:.+]] = tosa.pad
   // CHECK: return %[[PAD]]
   %shape = tosa.const_shape { value = dense<[1, 0, 0, 1]> : tensor<4xindex>} : () -> !tosa.shape<4>
-  %1 = tosa.pad %arg0, %shape : (tensor<?x?xf32>, !tosa.shape<4>) -> tensor<?x?xf32>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
+  %1 = tosa.pad %arg0, %shape, %pad_const : (tensor<?x?xf32>, !tosa.shape<4>, tensor<1xf32>) -> tensor<?x?xf32>
   return %1 : tensor<?x?xf32>
 }
 
@@ -280,7 +282,8 @@ func.func @pad_noop_type_mismatch_nofold(%arg0: tensor<10xf32>) -> tensor<?xf32>
   // CHECK: %[[PAD:.+]] = tosa.pad
   // CHECK: return %[[PAD]]
   %shape = tosa.const_shape { value = dense<[1, 2]> : tensor<2xindex>} : () -> !tosa.shape<2>
-  %0 = tosa.pad %arg0, %shape : (tensor<10xf32>, !tosa.shape<2>) -> tensor<?xf32>
+  %pad_const = "tosa.const"() {value = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
+  %0 = tosa.pad %arg0, %shape, %pad_const : (tensor<10xf32>, !tosa.shape<2>, tensor<1xf32>) -> tensor<?xf32>
   return %0 : tensor<?xf32>
 }
 
@@ -291,8 +294,9 @@ func.func @pad_determine_val_i32(%arg0: tensor<?x?xi32>, %arg1 : tensor<2x2xi32>
   // CHECK-DAG: %[[ZERO:.+]...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/129336


More information about the Mlir-commits mailing list