[Mlir-commits] [mlir] [mlir][linalg] Retain Op Type of linalg ops in fuseWithReshapeByExpansion pattern (PR #129128)

Nirvedh Meshram llvmlistbot at llvm.org
Thu Feb 27 13:44:28 PST 2025


https://github.com/nirvedhmeshram created https://github.com/llvm/llvm-project/pull/129128

This PR preserve linalg Op types instead of fusion always resulting in a generic Op.

>From 620f2a80aecf8013dd242a2f7868510e3b8ed3da Mon Sep 17 00:00:00 2001
From: Nirvedh Meshram <nirvedh at nod-labs.com>
Date: Thu, 27 Feb 2025 12:55:44 -0600
Subject: [PATCH] [mlir][linalg] Retain named ops in fuseWithReshapeByExpansion
 pattern

Signed-off-by: Nirvedh Meshram <nirvedh at gmail.com>
---
 .../Linalg/Transforms/ElementwiseOpFusion.cpp | 48 +++++++++++++-----
 mlir/test/Dialect/Linalg/reshape_fusion.mlir  | 49 ++++++++++++++-----
 2 files changed, 75 insertions(+), 22 deletions(-)

diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index f4b6955823085..f64151db8e5a0 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -927,17 +927,43 @@ fuseWithReshapeByExpansion(LinalgOp linalgOp, Operation *reshapeOp,
       iteratorTypes[j] = type;
 
   TypeRange resultTypes = ValueRange(outputs).getTypes();
-  auto fusedOp =
-      rewriter.create<GenericOp>(linalgOp.getLoc(), resultTypes,
-                                 /*inputs=*/expandedOpOperands, outputs,
-                                 expandedOpIndexingMaps, iteratorTypes);
-  Region &fusedRegion = fusedOp->getRegion(0);
-  Region &originalRegion = linalgOp->getRegion(0);
-  rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.begin());
-
-  // Update the index accesses after the expansion.
-  updateExpandedGenericOpRegion(rewriter, loc, fusedRegion, expansionInfo);
-
+  Operation *fusedOp;
+
+  TypeSwitch<Operation *>(linalgOp.getOperation())
+      .Case<GenericOp>([&](GenericOp op) {
+        fusedOp = rewriter.create<GenericOp>(
+            linalgOp.getLoc(), resultTypes, expandedOpOperands, outputs,
+            expandedOpIndexingMaps, iteratorTypes);
+        Region &fusedRegion = fusedOp->getRegion(0);
+        Region &originalRegion = linalgOp->getRegion(0);
+        rewriter.cloneRegionBefore(originalRegion, fusedRegion,
+                                   fusedRegion.begin());
+
+        // Update the index accesses after the expansion.
+        updateExpandedGenericOpRegion(rewriter, loc, fusedRegion,
+                                      expansionInfo);
+      })
+      .Case<TransposeOp>([&](TransposeOp op) {
+        SmallVector<ReassociationIndices> reassociation =
+            isExpanding ? expandingReshapeOp.getReassociationIndices()
+                        : collapsingReshapeOp.getReassociationIndices();
+        applyPermutationToVector(reassociation, op.getPermutation());
+        SmallVector<int64_t> newPerm;
+        for (auto reassoc : reassociation) {
+          for (auto dim : reassoc) {
+            newPerm.push_back(dim);
+          }
+        }
+        fusedOp = rewriter.create<TransposeOp>(
+            linalgOp.getLoc(), expandedOpOperands[0], outputs[0], newPerm);
+      })
+      // All other expandable linalg ops that are not generic or transpose can
+      // be cloned with the expanded input and output operands.
+      .Default([&](Operation *op) {
+        fusedOp = clone(
+            rewriter, linalgOp, resultTypes,
+            llvm::to_vector(llvm::concat<Value>(expandedOpOperands, outputs)));
+      });
   // Reshape the result values to their original shape if this is a collapsing
   // reshape folded into its consumer.
   SmallVector<Value> resultVals;
diff --git a/mlir/test/Dialect/Linalg/reshape_fusion.mlir b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
index ef853e4d662a7..80cebab590f6f 100644
--- a/mlir/test/Dialect/Linalg/reshape_fusion.mlir
+++ b/mlir/test/Dialect/Linalg/reshape_fusion.mlir
@@ -753,7 +753,6 @@ func.func @linalg_add_reshape_consumer_fusion(%arg0 : tensor<?x?xf32>,
   return %1 : tensor<?x?x4x5xf32>
 }
 
-//  CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 //      CHECK: func @linalg_add_reshape_consumer_fusion
 // CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
@@ -774,18 +773,13 @@ func.func @linalg_add_reshape_consumer_fusion(%arg0 : tensor<?x?xf32>,
 //      CHECK:   %[[DIM_5:.+]] = tensor.dim %[[ARG2]], %[[C1]] : tensor<?x?xf32>
 //      CHECK:   %[[VAL_2:.+]] = arith.divsi %[[DIM_5]], %[[C20]] : index
 //      CHECK:   %[[T3:.+]] = tensor.expand_shape %[[ARG2]] {{\[\[}}0], [1, 2, 3]] output_shape [%[[DIM_4]], %[[VAL_2]], 4, 5] : tensor<?x?xf32> into tensor<?x?x4x5xf32>
-//      CHECK:   %[[T4:.+]] = linalg.generic
-// CHECK-SAME:     indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]]
-// CHECK-SAME:     ["parallel", "parallel", "parallel", "parallel"]
+//      CHECK:   %[[T4:.+]] = linalg.add
 // CHECK-SAME:     ins(%[[T1]], %[[T2]] : tensor<?x?x4x5xf32>, tensor<?x?x4x5xf32>)
 // CHECK-SAME:     outs(%[[T3]] : tensor<?x?x4x5xf32>)
 //      CHECK:   return %[[T4]] : tensor<?x?x4x5xf32>
 
 // -----
 
-#map0 = affine_map<(d0, d1, d2) -> (d2, d0)>
-#map1 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
-#map2 = affine_map<(d0, d1, d2) -> (d0, d2)>
 func.func @linalg_add_reshape_producer_fusion(%arg0 : tensor<?x7x?x8xf32>,
                                               %arg1 : tensor<?x?xf32>,
                                               %arg2 : tensor<?x?xf32>) ->
@@ -798,7 +792,6 @@ func.func @linalg_add_reshape_producer_fusion(%arg0 : tensor<?x7x?x8xf32>,
   return %1 : tensor<?x?xf32>
 }
 
-//  CHECK-DAG: #[[$MAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
 //      CHECK: func @linalg_add_reshape_producer_fusion
 // CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x7x?x8xf32>
 // CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
@@ -817,9 +810,7 @@ func.func @linalg_add_reshape_producer_fusion(%arg0 : tensor<?x7x?x8xf32>,
 //      CHECK:   %[[VAL_2:.+]] = arith.divsi %[[DIM_1]], %[[C7]] : index
 //      CHECK:   %[[VAL_3:.+]] = arith.divsi %[[DIM_2]], %[[C8]] : index
 //      CHECK:   %[[T2:.+]] = tensor.expand_shape %[[ARG2]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[VAL_2]], 7, %[[VAL_3]], 8] : tensor<?x?xf32> into tensor<?x7x?x8xf32>
-//      CHECK:   %[[T3:.+]] = linalg.generic
-// CHECK-SAME:     indexing_maps = [#[[$MAP]], #[[$MAP]], #[[$MAP]]]
-// CHECK-SAME:     ["parallel", "parallel", "parallel", "parallel"]
+//      CHECK:   %[[T3:.+]] = linalg.add
 // CHECK-SAME:     ins(%[[ARG0]], %[[T1]] : tensor<?x7x?x8xf32>, tensor<?x7x?x8xf32>)
 // CHECK-SAME:     outs(%[[T2]] : tensor<?x7x?x8xf32>)
 //      CHECK:   %[[T4:.+]] = tensor.collapse_shape %[[T3]]
@@ -827,6 +818,42 @@ func.func @linalg_add_reshape_producer_fusion(%arg0 : tensor<?x7x?x8xf32>,
 // CHECK-SAME:     tensor<?x7x?x8xf32> into tensor<?x?xf32>
 //      CHECK:   return %[[T4]]
 
+// -----
+
+func.func @linalg_transpose_reshape_producer_fusion(%arg0 : tensor<?x7x?x8xf32>,
+                                              %arg1 : tensor<?x?xf32>) ->
+                                              tensor<?x?xf32>
+{
+  %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] :
+    tensor<?x7x?x8xf32> into tensor<?x?xf32>
+  %1 = linalg.transpose ins(%0 : tensor<?x?xf32>)
+       outs(%arg1 : tensor<?x?xf32>) permutation = [1, 0]
+  return %1 : tensor<?x?xf32>
+}
+
+//      CHECK: func @linalg_transpose_reshape_producer_fusion
+// CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x7x?x8xf32>
+// CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?xf32>
+//  CHECK-DAG:   %[[C8:.+]] = arith.constant 8 : index
+//  CHECK-DAG:   %[[C7:.+]] = arith.constant 7 : index
+//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
+//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
+//  CHECK-DAG:   %[[DIM:.+]] = tensor.dim %[[ARG1]], %[[C0]] : tensor<?x?xf32>
+//  CHECK-DAG:   %[[DIM_0:.+]] = tensor.dim %[[ARG1]], %[[C1]] : tensor<?x?xf32>
+//  CHECK-DAG:   %[[VAL_0:.+]] = arith.divsi %[[DIM_0]], %[[C7]] : index
+//  CHECK-DAG:   %[[VAL_1:.+]] = arith.divsi %[[DIM]], %[[C8]] : index
+//      CHECK:   %[[T1:.+]] = tensor.expand_shape %[[ARG1]] {{\[\[}}0, 1], [2, 3]] output_shape [%[[VAL_1]], 8, %[[VAL_0]], 7] : tensor<?x?xf32> into tensor<?x8x?x7xf32>
+//      CHECK:   %[[T2:.+]] = linalg.transpose
+// CHECK-SAME:     ins(%[[ARG0]] : tensor<?x7x?x8xf32>)
+// CHECK-SAME:     outs(%[[T1]] : tensor<?x8x?x7xf32>)
+// CHECK-SAME:   permutation = [2, 3, 0, 1]
+//      CHECK:   %[[T3:.+]] = tensor.collapse_shape %[[T2]]
+// CHECK-SAME:     [0, 1], [2, 3]
+// CHECK-SAME:     tensor<?x8x?x7xf32> into tensor<?x?xf32>
+//      CHECK:   return %[[T3]]
+
+
+
 // -----
 
 func.func @fuse_by_expanding_pad(%arg0 : tensor<2x3x4x5x6x7x8x9xi32>) -> tensor<8x12x17x336x14xi32> {



More information about the Mlir-commits mailing list