[Mlir-commits] [mlir] 0ba2000 - [mlir][tosa] Enhance the conv2d verifier (#128693)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Wed Feb 26 02:59:34 PST 2025


Author: Luke Hutton
Date: 2025-02-26T10:59:30Z
New Revision: 0ba2000b3cece317fd0ec6c433e49185885c4ef7

URL: https://github.com/llvm/llvm-project/commit/0ba2000b3cece317fd0ec6c433e49185885c4ef7
DIFF: https://github.com/llvm/llvm-project/commit/0ba2000b3cece317fd0ec6c433e49185885c4ef7.diff

LOG: [mlir][tosa] Enhance the conv2d verifier (#128693)

This commit adds additional checks to the conv2d verifier that check
error_if conditions from the tosa specification. Notably, it adds
padding, stride and dilation invalid value checking, output height and
width checking and bias size checking.

Signed-off-by: Luke Hutton <luke.hutton at arm.com>

Added: 
    

Modified: 
    mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
    mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
    mlir/test/Dialect/Tosa/canonicalize.mlir
    mlir/test/Dialect/Tosa/invalid.mlir
    mlir/test/Dialect/Tosa/level_check.mlir
    mlir/test/Dialect/Tosa/quant-test.mlir
    mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 20346b4d1fe4b..1a9b361756086 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -214,6 +214,16 @@ void mlir::tosa::printTypeOrAttr(OpAsmPrinter &p, Operation *op, TypeAttr type,
   }
 }
 
+//===----------------------------------------------------------------------===//
+// Tosa utilities.
+//===----------------------------------------------------------------------===//
+
+std::optional<int64_t> idivCheck(const int64_t lhs, const int64_t rhs) {
+  if (lhs % rhs != 0)
+    return std::nullopt;
+  return lhs / rhs;
+}
+
 //===----------------------------------------------------------------------===//
 // TOSA Operator Verifiers.
 //===----------------------------------------------------------------------===//
@@ -1621,13 +1631,6 @@ LogicalResult tosa::ResizeOp::verify() {
   const int64_t borderY = borderValues[0];
   const int64_t borderX = borderValues[1];
 
-  auto idivCheck = [](const int64_t lhs,
-                      const int64_t rhs) -> std::optional<int64_t> {
-    if (lhs % rhs != 0)
-      return std::nullopt;
-    return lhs / rhs;
-  };
-
   // Don't check with input height that could be broadcast (ih != 1)
   // since Linalg, a consumer of TOSA, expects broadcasting support
   // in resize to be available. Taking the cautious approach for now,
@@ -1967,6 +1970,97 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
 LogicalResult Conv2DOp::verify() {
   if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
     return failure();
+
+  llvm::ArrayRef<int64_t> padding = getPad();
+  if (llvm::any_of(padding, [](int64_t p) { return p < 0; }))
+    return emitOpError("expect all padding values to be >= 0, got ") << padding;
+
+  llvm::ArrayRef<int64_t> strides = getStride();
+  if (llvm::any_of(strides, [](int64_t s) { return s < 1; }))
+    return emitOpError("expect all stride values to be >= 1, got ") << strides;
+
+  llvm::ArrayRef<int64_t> dilations = getDilation();
+  if (llvm::any_of(dilations, [](int64_t d) { return d < 1; }))
+    return emitOpError("expect all dilation values to be >= 1, got ")
+           << dilations;
+
+  const RankedTensorType outputType =
+      llvm::dyn_cast<RankedTensorType>(getOutput().getType());
+  if (!outputType)
+    // Skip following checks if output is not ranked
+    return success();
+
+  const RankedTensorType inputType =
+      llvm::dyn_cast<RankedTensorType>(getInput().getType());
+  const RankedTensorType weightType =
+      llvm::dyn_cast<RankedTensorType>(getWeight().getType());
+
+  if (inputType && weightType) {
+    const auto verifyOutputSize =
+        [this](const int64_t inputSize, const int64_t kernelSize,
+               const int64_t outputSize, const int64_t padBefore,
+               const int64_t padAfter, const int64_t stride,
+               const int64_t dilation, const llvm::StringRef dimName,
+               const llvm::StringRef dimAxis,
+               const llvm::StringRef padBeforeName,
+               const llvm::StringRef padAfterName) -> LogicalResult {
+      if (inputSize == ShapedType::kDynamic ||
+          kernelSize == ShapedType::kDynamic)
+        return success();
+
+      const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck(
+          inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation,
+          stride);
+      if (!calculatedOutSizeMinusOne.has_value())
+        return emitOpError("expected input_")
+               << dimName << " - 1 + pad_" << padBeforeName << " + pad_"
+               << padAfterName << " - (kernel_" << dimName
+               << " - 1) * dilation_" << dimAxis
+               << " to be wholly divisible by stride_" << dimAxis << ", got ("
+               << inputSize << " - 1 + " << padBefore << " + " << padAfter
+               << " - (" << kernelSize << " - 1) * " << dilation << ") / "
+               << stride;
+
+      const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1;
+      if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize)
+        return emitOpError("calculated output ")
+               << dimName << " did not match expected: "
+               << "calculated=" << calculatedOutSize
+               << ", expected=" << outputSize;
+
+      return success();
+    };
+
+    if (failed(verifyOutputSize(
+            inputType.getDimSize(1), weightType.getDimSize(1),
+            outputType.getDimSize(1), padding[0], padding[1], strides[0],
+            dilations[0], "height", "y", "top", "bottom")))
+      return failure();
+
+    if (failed(verifyOutputSize(
+            inputType.getDimSize(2), weightType.getDimSize(2),
+            outputType.getDimSize(2), padding[2], padding[3], strides[1],
+            dilations[1], "width", "x", "left", "right")))
+      return failure();
+  }
+
+  const RankedTensorType biasType =
+      llvm::dyn_cast<RankedTensorType>(getBias().getType());
+  if (!biasType)
+    // Skip following checks if bias is not ranked
+    return success();
+
+  const int64_t biasChannels = biasType.getDimSize(0);
+  const int64_t outputChannels = outputType.getDimSize(3);
+  if (biasChannels == ShapedType::kDynamic ||
+      outputChannels == ShapedType::kDynamic)
+    // Skip following checks if biasChannels or outputChannels is dynamic dim
+    return success();
+
+  if (biasChannels != outputChannels && biasChannels != 1)
+    return emitOpError(
+               "bias channels expected to be equal to output channels (")
+           << outputChannels << ") or 1, got " << biasChannels;
   return success();
 }
 

diff  --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 1f096ce177488..3f10ebbaedcca 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -464,16 +464,16 @@ func.func @conv2d_scalar_bias_f32(%input: tensor<1x49x42x27xf32>, %weights: tens
 // CHECK-LABEL: @conv2d_i8
 func.func @conv2d_i8(%input: tensor<1x49x42x27xi8>, %weights: tensor<28x1x1x27xi8>, %bias: tensor<28xi8>) -> () {
   // HWCF: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<28x1x1x27xi8>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<1x1x27x28xi8>) permutation = [1, 2, 3, 0]
-  // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x45x40x28xi32>
-  // CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xi8>) outs(%[[INIT]] : tensor<1x45x40x28xi32>) {
+  // CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x49x42x28xi32>
+  // CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xi8>) outs(%[[INIT]] : tensor<1x49x42x28xi32>) {
   // CHECK:   arith.extsi
   // CHECK:   linalg.yield
-  // CHECK: } -> tensor<1x45x40x28xi32>
-  // CHECK: linalg.conv_2d_nhwc_fhwc_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, i32, i32) outs(%[[BROADCAST]] : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>
-  // HWCF: linalg.conv_2d_nhwc_hwcf_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]], %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<1x1x27x28xi8>, i32, i32) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>
+  // CHECK: } -> tensor<1x49x42x28xi32>
+  // CHECK: linalg.conv_2d_nhwc_fhwc_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, i32, i32) outs(%[[BROADCAST]] : tensor<1x49x42x28xi32>) -> tensor<1x49x42x28xi32>
+  // HWCF: linalg.conv_2d_nhwc_hwcf_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]], %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<1x1x27x28xi8>, i32, i32) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x49x42x28xi32>) -> tensor<1x49x42x28xi32>
 
   %zp = "tosa.const"() {value = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
-  %0 = tosa.conv2d %input, %weights, %bias, %zp, %zp {acc_type = i32, dilation = array<i64: 2, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, tensor<28xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x45x40x28xi32>
+  %0 = tosa.conv2d %input, %weights, %bias, %zp, %zp {acc_type = i32, dilation = array<i64: 2, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>} : (tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, tensor<28xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x49x42x28xi32>
   return
 }
 

diff  --git a/mlir/test/Dialect/Tosa/canonicalize.mlir b/mlir/test/Dialect/Tosa/canonicalize.mlir
index ef1185e11b459..03d5bb5dae941 100644
--- a/mlir/test/Dialect/Tosa/canonicalize.mlir
+++ b/mlir/test/Dialect/Tosa/canonicalize.mlir
@@ -201,23 +201,23 @@ func.func @concat_fold_cast(%arg0: tensor<?x1xf32>) -> tensor<?x?xf32> {
 // -----
 
 // CHECK-LABEL: @conv2d_stride_2
-func.func @conv2d_stride_2(%arg0: tensor<4x10x10x2xf32>) -> tensor<4x10x10x3xf32> {
+func.func @conv2d_stride_2(%arg0: tensor<4x11x11x2xf32>) -> tensor<4x6x6x3xf32> {
   // CHECK: tosa.conv2d
   %weight = "tosa.const"() {value = dense<[[[[1.0, 1.0]]], [[[1.0, 1.0]]], [[[1.0, 1.0]]]]> : tensor<3x1x1x2xf32>} : ()-> tensor<3x1x1x2xf32>
   %bias = "tosa.const"() {value = dense<0.0> : tensor<3xf32>} : ()-> tensor<3xf32>
-  %0 = tosa.conv2d %arg0, %weight, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 2>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x10x10x3xf32>
-  return %0 : tensor<4x10x10x3xf32>
+  %0 = tosa.conv2d %arg0, %weight, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 2>, dilation = array<i64: 1, 1>} : (tensor<4x11x11x2xf32>, tensor<3x1x1x2xf32>, tensor<3xf32>) -> tensor<4x6x6x3xf32>
+  return %0 : tensor<4x6x6x3xf32>
 }
 
 // -----
 
 // CHECK-LABEL: @conv2d_weight_2x2
-func.func @conv2d_weight_2x2(%arg0: tensor<4x10x10x1xf32>) -> tensor<4x10x10x1xf32> {
+func.func @conv2d_weight_2x2(%arg0: tensor<4x10x10x1xf32>) -> tensor<4x9x9x1xf32> {
   // CHECK: tosa.conv2d
   %weight = "tosa.const"() {value = dense<[[[[1.0], [1.0]], [[1.0], [1.0]]]]> : tensor<1x2x2x1xf32>} : ()-> tensor<1x2x2x1xf32>
   %bias = "tosa.const"() {value = dense<0.0> : tensor<1xf32>} : ()-> tensor<1xf32>
-  %0 = tosa.conv2d %arg0, %weight, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x1xf32>, tensor<1x2x2x1xf32>, tensor<1xf32>) -> tensor<4x10x10x1xf32>
-  return %0 : tensor<4x10x10x1xf32>
+  %0 = tosa.conv2d %arg0, %weight, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x1xf32>, tensor<1x2x2x1xf32>, tensor<1xf32>) -> tensor<4x9x9x1xf32>
+  return %0 : tensor<4x9x9x1xf32>
 }
 
 // -----

diff  --git a/mlir/test/Dialect/Tosa/invalid.mlir b/mlir/test/Dialect/Tosa/invalid.mlir
index 9123f84ab25b8..8e66551d71692 100644
--- a/mlir/test/Dialect/Tosa/invalid.mlir
+++ b/mlir/test/Dialect/Tosa/invalid.mlir
@@ -1171,3 +1171,75 @@ func.func @broadcast_resize_bilinear_i8(%arg0 : tensor<3x1x1x7xi8>) -> tensor<3x
 
   return %resize : tensor<3x4x5x7xi32>
 }
+
+// -----
+
+func.func @test_conv2d_invalid_padding(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op expect all padding values to be >= 0, got 0, 0, -1, 0}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, -1, 0>, stride = array<i64: 1, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_invalid_stride(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op expect all stride values to be >= 1, got 0, 1}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 0, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_invalid_dilation(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op expect all dilation values to be >= 1, got 1, 0}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 0>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_wholly_divisible_height(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op expected input_height - 1 + pad_top + pad_bottom - (kernel_height - 1) * dilation_y to be wholly divisible by stride_y, got (4 - 1 + 0 + 0 - (1 - 1) * 1) / 2}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_wholly_divisible_width(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op expected input_width - 1 + pad_left + pad_right - (kernel_width - 1) * dilation_x to be wholly divisible by stride_x, got (4 - 1 + 0 + 0 - (1 - 1) * 1) / 2}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 2>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_unexpected_output_height(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x6x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op calculated output height did not match expected: calculated=4, expected=6}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x6x4x8xf32>
+  return %0 : tensor<1x6x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_unexpected_output_width(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x6x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op calculated output width did not match expected: calculated=4, expected=6}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x6x8xf32>
+  return %0 : tensor<1x4x6x8xf32>
+}
+
+// -----
+
+func.func @test_conv2d_invalid_bias_size(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<7xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+  // expected-error at +1 {{'tosa.conv2d' op bias channels expected to be equal to output channels (8) or 1, got 7}}
+  %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+    : (tensor<1x4x4x4xf32>, tensor<8x1x1x4xf32>, tensor<7xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+  return %0 : tensor<1x4x4x8xf32>
+}

diff  --git a/mlir/test/Dialect/Tosa/level_check.mlir b/mlir/test/Dialect/Tosa/level_check.mlir
index 2a6561fea67b5..2a119a87abc52 100644
--- a/mlir/test/Dialect/Tosa/level_check.mlir
+++ b/mlir/test/Dialect/Tosa/level_check.mlir
@@ -225,74 +225,74 @@ func.func @test_avgpool2d_pad_right(%arg0: tensor<1x32x32x8xf32>) -> tensor<1x32
 
 // -----
 
-func.func @test_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<*xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 4097, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<*xf32>
+  return %0 : tensor<*xf32>
 }
 
 // -----
 
-func.func @test_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<*xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 4097>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<*xf32>
+  return %0 : tensor<*xf32>
 }
 
 // -----
 
-func.func @test_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x8225x32x16xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: pad <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 8193, 1, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x8225x32x16xf32>
+  return %0 : tensor<1x8225x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_pad_bottom(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_pad_bottom(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x8224x32x16xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: pad <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 8193, 0, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x8224x32x16xf32>
+  return %0 : tensor<1x8224x32x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_pad_left(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_pad_left(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x8225x16xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: pad <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 8193, 1>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x8225x16xf32>
+  return %0 : tensor<1x32x8225x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_pad_right(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_pad_right(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x8224x16xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: pad <= MAX_KERNEL}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 8193>, stride = array<i64: 1, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x8224x16xf32>
+  return %0 : tensor<1x32x8224x16xf32>
 }
 
 // -----
 
-func.func @test_conv2d_stride_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_stride_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<*xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: stride <= MAX_STRIDE}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 8193, 1>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<*xf32>
+  return %0 : tensor<*xf32>
 }
 
 // -----
 
-func.func @test_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<1x32x32x16xf32> {
+func.func @test_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2x2x8xf32>, %arg2: tensor<16xf32>) -> tensor<*xf32> {
   // expected-error at +1 {{'tosa.conv2d' op failed level check: stride <= MAX_STRIDE}}
   %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 8193>} :
-            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<1x32x32x16xf32>
-  return %0 : tensor<1x32x32x16xf32>
+            (tensor<1x32x32x8xf32>, tensor<16x2x2x8xf32>, tensor<16xf32>) -> tensor<*xf32>
+  return %0 : tensor<*xf32>
 }
 
 // -----

diff  --git a/mlir/test/Dialect/Tosa/quant-test.mlir b/mlir/test/Dialect/Tosa/quant-test.mlir
index ee6caf285a248..0ed55ce7a1a6b 100644
--- a/mlir/test/Dialect/Tosa/quant-test.mlir
+++ b/mlir/test/Dialect/Tosa/quant-test.mlir
@@ -10,11 +10,11 @@ func.func @test_build_qtype(%arg0 : tensor<16x1x1x8x!quant.uniform<u8<1:255>:f32
 
 // -----
 // CHECK-LABEL: test_build_mult_and_shift
-func.func @test_build_mult_and_shift(%arg0: tensor<1x32x32x8x!quant.uniform<i8:f32, 0.015684768557548523>>, %arg1 : tensor<16x1x1x8x!quant.uniform<i8<-127:127>:f32, 0.015680249780416489>>, %arg2 : tensor<16xi32>) -> tensor<1x32x32x16x!quant.uniform<i32:f32, 0.078431375324726104>> {
+func.func @test_build_mult_and_shift(%arg0: tensor<1x32x32x8x!quant.uniform<i8:f32, 0.015684768557548523>>, %arg1 : tensor<16x1x1x8x!quant.uniform<i8<-127:127>:f32, 0.015680249780416489>>, %arg2 : tensor<16xi32>) -> tensor<1x34x36x16x!quant.uniform<i32:f32, 0.078431375324726104>> {
   // CHECK: tosa.conv2d
   %input_zp = "tosa.const"() {value = dense<-1> : tensor<1xi8>} : () -> tensor<1xi8>
   %weight_zp = "tosa.const"() {value = dense<1> : tensor<1xi8>} : () -> tensor<1xi8>
-  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2, %input_zp, %weight_zp) {acc_type = i32, pad = array<i64: 1, 1, 2, 2>, dilation = array<i64: 2, 1>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8x!quant.uniform<i8:f32, 0.015684768557548523>>, tensor<16x1x1x8x!quant.uniform<i8<-127:127>:f32, 0.015680249780416489>>, tensor<16xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x32x32x16x!quant.uniform<i32:f32, 0.078431375324726104>>
-  return %0 : tensor<1x32x32x16x!quant.uniform<i32:f32, 0.078431375324726104>>
+  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2, %input_zp, %weight_zp) {acc_type = i32, pad = array<i64: 1, 1, 2, 2>, dilation = array<i64: 2, 1>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8x!quant.uniform<i8:f32, 0.015684768557548523>>, tensor<16x1x1x8x!quant.uniform<i8<-127:127>:f32, 0.015680249780416489>>, tensor<16xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x34x36x16x!quant.uniform<i32:f32, 0.078431375324726104>>
+  return %0 : tensor<1x34x36x16x!quant.uniform<i32:f32, 0.078431375324726104>>
 
 }

diff  --git a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
index 1821b78091aad..cb8bd461e5901 100644
--- a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
+++ b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
@@ -770,9 +770,9 @@ func.func @conv2d_dilated(%input: tensor<2x12x14x3xf32>, %weights: tensor<5x3x6x
 // -----
 
 // CHECK-LABEL: @conv2d_strided
-func.func @conv2d_strided(%input: tensor<1x13x14x1xf32>, %weights: tensor<1x1x1x1xf32>, %bias: tensor<1xf32>) -> () {
-  // CHECK: -> tensor<1x5x7x1xf32>
-  %0 = tosa.conv2d %input, %weights, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 3, 2>, dilation = array<i64: 1, 1>} : (tensor<1x13x14x1xf32>, tensor<1x1x1x1xf32>, tensor<1xf32>) -> tensor<?x?x?x?xf32>
+func.func @conv2d_strided(%input: tensor<1x13x15x1xf32>, %weights: tensor<1x1x1x1xf32>, %bias: tensor<1xf32>) -> () {
+  // CHECK: -> tensor<1x5x8x1xf32>
+  %0 = tosa.conv2d %input, %weights, %bias {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 3, 2>, dilation = array<i64: 1, 1>} : (tensor<1x13x15x1xf32>, tensor<1x1x1x1xf32>, tensor<1xf32>) -> tensor<?x?x?x?xf32>
   return
 }
 


        


More information about the Mlir-commits mailing list