[Mlir-commits] [mlir] [mlir][tosa] Fold 'small' constant 1D concat operations (PR #128080)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Feb 20 14:35:40 PST 2025
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-tosa
@llvm/pr-subscribers-mlir
Author: Jerry-Ge (Jerry-Ge)
<details>
<summary>Changes</summary>
The commit improves the concat folder to cover operations consisting of all constant inputs where the number of output values does not exceed 6. Keeping the folder restricted to small inputs avoids a large folder runtime or increased memory requirements.
This folder is useful in the context of legalizing dynamic models where the input shapes are resolved to static directly before legalization. In this context, constant shape operations are used over tensors of num elements <= 6 (tosa_level_8k MAX_RANK).
---
Full diff: https://github.com/llvm/llvm-project/pull/128080.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp (+36-2)
- (modified) mlir/test/Dialect/Tosa/fold_concats.mlir (+13)
``````````diff
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
index 9bfc2aae1d6a5..f31c388f71f19 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
@@ -1226,16 +1226,50 @@ OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) {
}
OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) {
+ const auto operands = getOperands();
+ const unsigned int numOperands = getNumOperands();
+
+ // Fold concat when all operands are constant and the output is 'small'
+ auto hasAllConstOperands = [](Value v){
+ return llvm::dyn_cast_or_null<tosa::ConstOp>(v.getDefiningOp());};
+ if (llvm::all_of(operands, hasAllConstOperands)) {
+ const ShapedType outputType = dyn_cast<ShapedType>(getOutput().getType());
+ if (!outputType || !outputType.hasStaticShape()) {
+ return {};
+ }
+
+ // A 'small' output is currently defined as 1D and <= 6 elements (tosa_level_8k MAX_RANK)
+ if (outputType.getRank() != 1) {
+ return {};
+ }
+ const int64_t outputNumElements = outputType.getNumElements();
+ if (outputNumElements > 6) {
+ return {};
+ }
+
+ llvm::SmallVector<Attribute> constOperands;
+ constOperands.reserve(outputNumElements);
+ for (const Attribute operand : adaptor.getOperands()) {
+ const auto elementsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(operand);
+ if (!elementsAttr) {
+ return {};
+ }
+ constOperands.append(llvm::to_vector(elementsAttr.getValues<Attribute>()));
+ }
+
+ return DenseElementsAttr::get(outputType, constOperands);
+ }
+
// Fold consecutive concats on the same axis into a single op.
// Keep track of the operands so we are able to construct a new concat
// later. Conservatively assume that we double the number of operands when
// folding
SmallVector<Value, 8> concatOperands;
- concatOperands.reserve(2 * getNumOperands());
+ concatOperands.reserve(2 * numOperands);
// Find all operands that are foldable concats
bool foundFoldableConcat = false;
- for (Value operand : getOperands()) {
+ for (Value operand : operands) {
concatOperands.emplace_back(operand);
auto producer = dyn_cast_or_null<ConcatOp>(operand.getDefiningOp());
diff --git a/mlir/test/Dialect/Tosa/fold_concats.mlir b/mlir/test/Dialect/Tosa/fold_concats.mlir
index ec54f27346c8b..6bfbeed81e88f 100644
--- a/mlir/test/Dialect/Tosa/fold_concats.mlir
+++ b/mlir/test/Dialect/Tosa/fold_concats.mlir
@@ -91,3 +91,16 @@ func.func @partially_foldable(%arg0: tensor<1x1x8x8xf32>, %arg1: tensor<1x2x4x8x
// CHECK: %[[VAL_3:.*]] = tosa.concat %[[VAL_0]], %[[VAL_0]], %[[VAL_2]] {axis = 1 : i32} : (tensor<1x1x8x8xf32>, tensor<1x1x8x8xf32>, tensor<1x2x8x8xf32>) -> tensor<1x4x8x8xf32>
// CHECK: return %[[VAL_3]] : tensor<1x4x8x8xf32>
// CHECK: }
+
+// -----
+
+// CHECK-LABEL: test_fold_small_const_concat
+func.func @test_fold_small_const_concat() -> tensor<6xi8> {
+ // CHECK-DAG: %[[VAL_0:.*]] = "tosa.const"() <{value = dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi8>}> : () -> tensor<6xi8>
+ // CHECK: return %[[VAL_0]] : tensor<6xi8>
+ %0 = "tosa.const"() <{value = dense<[1, 2]> : tensor<2xi8>}> : () -> tensor<2xi8>
+ %1 = "tosa.const"() <{value = dense<[3, 4, 5]> : tensor<3xi8>}> : () -> tensor<3xi8>
+ %2 = "tosa.const"() <{value = dense<6> : tensor<1xi8>}> : () -> tensor<1xi8>
+ %3 = "tosa.concat"(%0, %1, %2) <{axis = 0 : i32}> : (tensor<2xi8>, tensor<3xi8>, tensor<1xi8>) -> tensor<6xi8>
+ func.return %3 : tensor<6xi8>
+}
``````````
</details>
https://github.com/llvm/llvm-project/pull/128080
More information about the Mlir-commits
mailing list