[Mlir-commits] [mlir] [MLIR][Linalg] Introduce Python API for linalg.batch_matmul Ops. (PR #127614)

Md Asghar Ahmad Shahid llvmlistbot at llvm.org
Tue Feb 18 02:44:36 PST 2025


https://github.com/shahidact created https://github.com/llvm/llvm-project/pull/127614

As linalg.batch_matmul has been moved into tablegen from OpDSL, its derived python wrapper no longer exist.This patch adds the required python wrapper.

Also refactors the BatchmatmulOp printer to make it consistent with its parser.

>From 50236998fd9de34cf5cd5f0a9f9d9a2fc98fb19e Mon Sep 17 00:00:00 2001
From: mshahid <md.asghar.ahmad.shahid at intel.com>
Date: Tue, 18 Feb 2025 01:39:45 -0800
Subject: [PATCH] [MLIR][Linalg] Introduce Python API for linalg.batch_matmul
 Ops.

As linalg.batch_matmul has moved into tablegen from OpDSL, its derived
python wrapper no longer exist.This patch adds the required python
wrapper.

Also refactors the BatchmatmulOp printer to make it consistent with its
parser.
---
 .../Dialect/Linalg/IR/LinalgStructuredOps.td  |  5 +-
 mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp      | 10 +-
 mlir/python/mlir/dialects/linalg/__init__.py  | 20 ++++
 mlir/test/Dialect/Linalg/named-ops.mlir       | 10 +-
 mlir/test/python/dialects/linalg/ops.py       | 99 +++++++++++++++++++
 5 files changed, 133 insertions(+), 11 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index 6a439bfb09078..7ce6c4a353afe 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -858,7 +858,10 @@ def BatchMatmulOp : LinalgStructuredBase_Op<"batch_matmul", !listconcat([AttrSiz
     let arguments = (ins
       Variadic<AnyType>:$inputs,
       Variadic<AnyShaped>:$outputs,
-      DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps
+      DefaultValuedOptionalAttr<
+       AffineMapArrayAttr,
+       "BatchMatmulOp::getDefaultIndexingMaps($_builder.getContext())"
+      >:$indexing_maps
     );
     let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
     let regions = (region AnyRegion:$region);
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index b756a67f3ba7a..b488e748df7ba 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -4004,11 +4004,6 @@ ParseResult BatchMatmulOp::parse(OpAsmParser &parser, OperationState &result) {
 }
 
 void BatchMatmulOp::print(OpAsmPrinter &p) {
-  SmallVector<StringRef, 3> elidedAttrs = {
-      "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"};
-  ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
-                           elidedAttrs);
-
   SmallVector<Attribute, 3> indexingMaps = llvm::map_to_vector(
       BatchMatmulOp::getDefaultIndexingMaps(getContext()),
       [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
@@ -4018,6 +4013,11 @@ void BatchMatmulOp::print(OpAsmPrinter &p) {
                           [&](Attribute attr) { p.printAttribute(attr); });
     p << "]";
   }
+
+  SmallVector<StringRef, 3> elidedAttrs = {
+      "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"};
+  ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
+                           elidedAttrs);
 }
 
 /// Verify the user defined indexing maps.
diff --git a/mlir/python/mlir/dialects/linalg/__init__.py b/mlir/python/mlir/dialects/linalg/__init__.py
index 5cda4769d593f..e4890dd97e935 100644
--- a/mlir/python/mlir/dialects/linalg/__init__.py
+++ b/mlir/python/mlir/dialects/linalg/__init__.py
@@ -193,3 +193,23 @@ def contract(
     )
     fill_builtin_region(op.operation)
     return op
+
+def batch_matmul(
+    *ins: Union[Operation, OpView, Value],
+    outs: Sequence[Union[Operation, OpView, Value]],
+    indexing_maps: Optional[Sequence[AffineMapAttr]] = None,
+):
+    ins = [_get_op_result_or_value(input) for input in ins]
+    if len(outs) > 1:
+        raise ValueError(f"{outs=} must have length 1.")
+    init = _get_op_result_or_value(outs[0])
+    result_types = [init.type] if isinstance(init.type, RankedTensorType) else []
+
+    op = BatchMatmulOp(
+        result_tensors=result_types,
+        inputs=ins,
+        outputs=[init],
+        indexing_maps=indexing_maps,
+    )
+    fill_builtin_region(op.operation)
+    return op
diff --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index 8474eeac0db5b..1bd9c8825b05e 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -1497,7 +1497,7 @@ func.func @matmul_transpose_b(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %a
 // CHECK-SAME:                                    %[[VAL_0:.*]]: memref<5xf32>,
 // CHECK-SAME:                                    %[[VAL_1:.*]]: memref<2x5x7xf32>,
 // CHECK-SAME:                                    %[[VAL_2:.*]]: memref<2x3x7xf32>) {
-// CHECK:           linalg.batch_matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<2x5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           linalg.batch_matmul indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]] ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<2x5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>)
 // CHECK:           return
 // CHECK:         }
 func.func @batch_matmul_bcast_k_to_fill_missing_dims_A(%arg0: memref<5xf32>, %arg1: memref<2x5x7xf32>, %arg2: memref<2x3x7xf32>) {
@@ -1520,7 +1520,7 @@ func.func @batch_matmul_bcast_k_to_fill_missing_dims_A(%arg0: memref<5xf32>, %ar
 // CHECK-SAME:                                              %[[VAL_0:.*]]: memref<3x5xf32>,
 // CHECK-SAME:                                              %[[VAL_1:.*]]: memref<2x5x7xf32>,
 // CHECK-SAME:                                              %[[VAL_2:.*]]: memref<2x3x7xf32>) {
-// CHECK:           linalg.batch_matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<2x5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           linalg.batch_matmul indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]] ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<2x5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>)
 // CHECK:           return
 // CHECK:         }
 func.func @batch_matmul_bcast_batch_dim_A(%arg0: memref<3x5xf32>, %arg1: memref<2x5x7xf32>, %arg2: memref<2x3x7xf32>) {
@@ -1543,7 +1543,7 @@ func.func @batch_matmul_bcast_batch_dim_A(%arg0: memref<3x5xf32>, %arg1: memref<
 // CHECK-SAME:                                                    %[[VAL_0:.*]]: memref<2x3x5xf32>,
 // CHECK-SAME:                                                    %[[VAL_1:.*]]: memref<5xf32>,
 // CHECK-SAME:                                                    %[[VAL_2:.*]]: memref<2x3x7xf32>) {
-// CHECK:           linalg.batch_matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<2x3x5xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           linalg.batch_matmul indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]] ins(%[[VAL_0]], %[[VAL_1]] : memref<2x3x5xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>)
 // CHECK:           return
 // CHECK:         }
 func.func @batch_matmul_bcast_batch_and_n_dim_B(%arg0: memref<2x3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<2x3x7xf32>) {
@@ -1566,7 +1566,7 @@ func.func @batch_matmul_bcast_batch_and_n_dim_B(%arg0: memref<2x3x5xf32>, %arg1:
 // CHECK-SAME:                                              %[[VAL_0:.*]]: memref<2x3x5xf32>,
 // CHECK-SAME:                                              %[[VAL_1:.*]]: memref<5x7xf32>,
 // CHECK-SAME:                                              %[[VAL_2:.*]]: memref<2x3x7xf32>) {
-// CHECK:           linalg.batch_matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<2x3x5xf32>, memref<5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           linalg.batch_matmul indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]] ins(%[[VAL_0]], %[[VAL_1]] : memref<2x3x5xf32>, memref<5x7xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>)
 // CHECK:           return
 // CHECK:         }
 
@@ -1622,7 +1622,7 @@ func.func @batch_matmul_explicit_transpose_B(%arg0: memref<2x3x5xf32>, %arg1: me
 // CHECK-SAME:                                                %[[VAL_0:.*]]: memref<3x5xf32>,
 // CHECK-SAME:                                                %[[VAL_1:.*]]: memref<2x7x5xf32>,
 // CHECK-SAME:                                                %[[VAL_2:.*]]: memref<2x3x7xf32>) {
-// CHECK:           linalg.batch_matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<2x7x5xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           linalg.batch_matmul indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]] ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<2x7x5xf32>) outs(%[[VAL_2]] : memref<2x3x7xf32>)
 // CHECK:           return
 // CHECK:         }
 func.func @batch_matmul_bcast_A_transpose_B(%arg0: memref<3x5xf32>, %arg1: memref<2x7x5xf32>, %arg2: memref<2x3x7xf32>) {
diff --git a/mlir/test/python/dialects/linalg/ops.py b/mlir/test/python/dialects/linalg/ops.py
index 94f8ea4faf4a8..914fa4b7af261 100644
--- a/mlir/test/python/dialects/linalg/ops.py
+++ b/mlir/test/python/dialects/linalg/ops.py
@@ -466,3 +466,102 @@ def matmul_as_contract_op(
                 )
 
         print(module)
+
+# CHECK-LABEL: TEST: testBatchMatmulOp
+ at run
+def testBatchMatmulOp():
+    with Context(), Location.unknown():
+        module = Module.create()
+        f32 = F32Type.get()
+        with InsertionPoint(module.body):
+            a_shape = (2, 4, 8)
+            b_shape = (2, 8, 12)
+            b_transposed_shape = (2, 12, 8)
+            c_shape = (2, 4, 12)
+
+            dimBatch = ir.AffineDimExpr.get(0)
+            dimM = ir.AffineDimExpr.get(1)
+            dimN = ir.AffineDimExpr.get(2)
+            dimK = ir.AffineDimExpr.get(3)
+
+            # CHECK: #[[$A_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
+            # CHECK: #[[$BTrans_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
+            # CHECK: #[[$C_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
+
+            a_map = ir.AffineMap.get(4, 0, [dimBatch, dimM, dimK])
+            b_transposed_map = ir.AffineMap.get(4, 0, [dimBatch, dimN, dimK])
+            c_map = ir.AffineMap.get(4, 0, [dimBatch, dimM, dimN])
+
+            # CHECK: func.func @batch_matmul_op(
+            @func.FuncOp.from_py_func(
+                # CHECK-SAME:                         %[[A:.*]]: tensor<2x4x8xf32>,
+                RankedTensorType.get(a_shape, f32),
+                # CHECK-SAME:                         %[[Amem:.*]]: memref<2x4x8xf32>,
+                MemRefType.get(a_shape, f32),
+                # CHECK-SAME:                         %[[B:.*]]: tensor<2x8x12xf32>,
+                RankedTensorType.get(b_shape, f32),
+                # CHECK-SAME:                         %[[Bmem:.*]]: memref<2x8x12xf32>,
+                MemRefType.get(b_shape, f32),
+                # CHECK-SAME:                         %[[BTrans:.*]]: tensor<2x12x8xf32>,
+                RankedTensorType.get(b_transposed_shape, f32),
+                # CHECK-SAME:                         %[[BTransmem:.*]]: memref<2x12x8xf32>,
+                MemRefType.get(b_transposed_shape, f32),
+                # CHECK-SAME:                         %[[C:.*]]: tensor<2x4x12xf32>,
+                RankedTensorType.get(c_shape, f32),
+                # CHECK-SAME:                         %[[Cmem:.*]]: memref<2x4x12xf32>)
+                MemRefType.get(c_shape, f32),
+            )
+            def batch_matmul_op(A, Amem, B, Bmem, Btransposed, Btransposedmem, C, Cmem):
+                # CHECK: linalg.batch_matmul ins(%[[A]], %[[B]] : tensor<2x4x8xf32>, tensor<2x8x12xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
+                res = linalg.BatchMatmulOp(
+                    result_tensors=(C.type,),
+                    inputs=(A, B),
+                    outputs=(C,),
+                )
+                linalg.fill_builtin_region(res.operation)
+                # CHECK: linalg.batch_matmul ins(%[[A]], %[[B]] : tensor<2x4x8xf32>, tensor<2x8x12xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
+                res = linalg.batch_matmul(A, B, outs=(C,))
+
+                # CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<2x4x8xf32>, tensor<2x12x8xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
+                res = linalg.BatchMatmulOp(
+                    result_tensors=(C.type,),
+                    inputs=(A, Btransposed),
+                    outputs=(C,),
+                    indexing_maps=[a_map, b_transposed_map, c_map],
+                )
+                linalg.fill_builtin_region(res.operation)
+                # CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<2x4x8xf32>, tensor<2x12x8xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
+                res = linalg.batch_matmul(
+                    A,
+                    Btransposed,
+                    outs=(C,),
+                    indexing_maps=[a_map, b_transposed_map, c_map],
+                )
+
+                # CHECK: linalg.batch_matmul ins(%[[Amem]], %[[Bmem]] : memref<2x4x8xf32>, memref<2x8x12xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
+                res = linalg.BatchMatmulOp(
+                    result_tensors=[],
+                    inputs=(Amem, Bmem),
+                    outputs=(Cmem,),
+                )
+                linalg.fill_builtin_region(res.operation)
+                # CHECK: linalg.batch_matmul ins(%[[Amem]], %[[Bmem]] : memref<2x4x8xf32>, memref<2x8x12xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
+                linalg.batch_matmul(Amem, Bmem, outs=(Cmem,))
+
+                # CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<2x4x8xf32>, memref<2x12x8xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
+                res = linalg.BatchMatmulOp(
+                    result_tensors=[],
+                    inputs=(Amem, Btransposedmem),
+                    outputs=(Cmem,),
+                    indexing_maps=[a_map, b_transposed_map, c_map],
+                )
+                linalg.fill_builtin_region(res.operation)
+                # CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<2x4x8xf32>, memref<2x12x8xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
+                linalg.batch_matmul(
+                    Amem,
+                    Btransposedmem,
+                    outs=(Cmem,),
+                    indexing_maps=[a_map, b_transposed_map, c_map],
+                )
+
+    print(module)



More information about the Mlir-commits mailing list