[Mlir-commits] [mlir] [MLIR] Add pattern to bubble up tensor.extract_slice (PR #126898)
Quinn Dawkins
llvmlistbot at llvm.org
Fri Feb 14 10:52:04 PST 2025
================
@@ -0,0 +1,207 @@
+//===- BubbleUpExtractSlice.cpp ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Swap a `tensor.extract_slice` with the producer of the source in some cases
+// where that is valid. When used as cleanup patterns of tile and fuse, enables
+// fusing the producer with the consumer even if the producer does not implement
+// the tiling interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Affine/IR/AffineOps.h"
+#include "mlir/Dialect/Arith/Utils/Utils.h"
+#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
+#include "mlir/Dialect/Tensor/Utils/Utils.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/OpDefinition.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/Interfaces/ValueBoundsOpInterface.h"
+
+using namespace mlir;
+using namespace mlir::tensor;
+
+/// Converts `tensor.extract_slice(tensor.expand_shape)` to
+/// `tensor.expand_shape(tensor.extract_slice)`.
+/// For this transformation to be possible, the slice must be fully contiguous
+/// within each reassociation group of the expand_shape. If the transformation
+/// is not possible, or if the slice is rank reducting, the function returns
+/// failure.
+///
+/// Example:
+/// ```
+/// %reshape = tensor.expand_shape %in [[0, 1], [2, 3], [4, 5, 6]]
+/// tensor<8x16x32xf32> to tensor<2x4x2x8x4x2x4xf32>
+/// %slice = tensor.extract_slice %reshape ...
+/// tensor<2x4x2x8x4x2x4xf32> to tensor<2x4x1x5x1x1x4xf32>
+///
+/// // The transformation is possible because each reassociation group has a
+/// // contiguous slice. (i.e., [2x4->2x4], [2x8->1x5], [4x2x4->1x1x4])
+/// // After the transformation:
+///
+/// %slice = tensor.extract_slice %in ...
+/// tensor<8x16x32xf32> to tensor<8x5x4xf32>
+/// %reshape = tensor.expand_shape %slice [[0, 1], [2, 3], [4, 5, 6]]
+/// tensor<8x5x4xf32> to tensor<2x4x1x5x1x1x4xf32>
+/// ```
+static LogicalResult
+swapExpandShapeWithSlice(RewriterBase &rewriter,
+ tensor::ExpandShapeOp expandShapeOp,
+ tensor::ExtractSliceOp sliceOp) {
+ SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
+ SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
+
+ if (static_cast<size_t>(sliceOp.getResultType().getRank()) != sizes.size()) {
+ return rewriter.notifyMatchFailure(sliceOp,
+ "unimplemented: rank reducing slice");
+ }
+
+ // Helper variables and function for accumulating the new offset and length
+ // values.
+ Location loc = expandShapeOp->getLoc();
+ AffineExpr d0, d1, d2;
+ bindDims(rewriter.getContext(), d0, d1, d2);
+ // Multiply two integers.
+ auto mul = [&](OpFoldResult v1, OpFoldResult v2) {
+ auto mulMap = AffineMap::get(2, 0, {d0 * d1});
+ return affine::makeComposedFoldedAffineApply(rewriter, loc, mulMap,
+ {v1, v2});
+ };
+
+ SmallVector<OpFoldResult> outputShape =
+ getMixedValues(expandShapeOp.getStaticOutputShape(),
+ expandShapeOp.getOutputShape(), rewriter);
+
+ auto isZeroOffsetAndFullSize = [](OpFoldResult offset, OpFoldResult sliceSize,
+ OpFoldResult size) {
+ if (!isConstantIntValue(offset, 0))
+ return false;
+ FailureOr<bool> maybeEqual =
+ ValueBoundsConstraintSet::areEqual(sliceSize, size);
+ return llvm::succeeded(maybeEqual) && maybeEqual.value();
+ };
+
+ // First verify that this is a full slice of the expanded tensor.
+ for (const ReassociationIndices &indices :
+ expandShapeOp.getReassociationIndices()) {
+ int64_t i = 0;
+ int64_t e = indices.size();
+ // Find the first expanded dim after the first dim with non-unit extracted
+ // size.
+ for (; i < e; ++i) {
+ if (!isConstantIntValue(sizes[indices[i]], 1)) {
+ // +1 to skip the first non-unit size dim.
+ i++;
+ break;
+ }
+ }
+
+ // Verify that all subsequent dimensions extract the full size of the
+ // source tensor.
+ for (; i < e; ++i) {
+ int64_t expandedDim = indices[i];
+ if (!isZeroOffsetAndFullSize(offsets[expandedDim], sizes[expandedDim],
+ outputShape[expandedDim])) {
+ return rewriter.notifyMatchFailure(
+ sliceOp, "Not a contiguous slice of the expanded tensor.");
+ }
+ }
+ }
+
+ // Compute new offsets, lengths, and strides.
+ SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
+ for (const ReassociationIndices &indices :
+ expandShapeOp.getReassociationIndices()) {
+ OpFoldResult newSize = rewriter.getIndexAttr(1);
+ SmallVector<OpFoldResult> basis, delinOffsets;
+
+ int64_t i = 0;
+ int64_t e = indices.size();
+ // Offset = cumulative product of leading unit extracted dims.
+ for (; i < e; ++i) {
+ int64_t expandedDim = indices[i];
+ if (!isConstantIntValue(sizes[expandedDim], 1))
+ break;
+
+ basis.push_back(outputShape[expandedDim]);
+ delinOffsets.push_back(offsets[expandedDim]);
+ }
+
+ if (i != e) {
+ int64_t expandedDim = indices[i];
+ basis.push_back(outputShape[expandedDim]);
+ delinOffsets.push_back(offsets[expandedDim]);
+ newSize = sizes[expandedDim];
+ i++;
+ }
+
+ for (; i < e; ++i) {
+ OpFoldResult fullSize = outputShape[indices[i]];
+ basis.push_back(fullSize);
+ delinOffsets.push_back(rewriter.getIndexAttr(0));
+ newSize = mul(newSize, fullSize);
+ }
+ SmallVector<Value> offsetVals =
+ llvm::map_to_vector(delinOffsets, [&](OpFoldResult ofr) {
+ return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
+ });
+ OpFoldResult newOffset = rewriter
+ .create<affine::AffineLinearizeIndexOp>(
+ loc, offsetVals, basis, /*disjoint=*/true)
+ .getResult();
+ newOffsets.push_back(newOffset);
+ newLengths.push_back(newSize);
+
+ // Only unit stride supported.
+ newStrides.push_back(rewriter.getIndexAttr(1));
+ }
+
+ // The shape of the result can be obtained from the sizes passed in.
+ SmallVector<Value> dynDims;
+ SmallVector<int64_t> shape;
+ dispatchIndexOpFoldResults(sizes, dynDims, shape);
+ RankedTensorType resultType = RankedTensorType::get(
+ shape, expandShapeOp.getResultType().getElementType());
+
+ // Create a new ExtractSliceOp and ExpandShapeOp.
+ Value newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
+ loc, expandShapeOp.getSrc(), newOffsets, newLengths, newStrides);
+ auto newExpandShapeOp = rewriter.create<tensor::ExpandShapeOp>(
+ loc, resultType, newSliceOp, expandShapeOp.getReassociationIndices(),
+ sizes);
+ rewriter.replaceOp(sliceOp, newExpandShapeOp);
----------------
qedawkins wrote:
nit: Can use `replaceOpWithNewOp`
https://github.com/llvm/llvm-project/pull/126898
More information about the Mlir-commits
mailing list