[Mlir-commits] [mlir] 68d6866 - [mlir][XeGPU] add WgToSg distribution pattern for load_matrix and store_matrix. (#154403)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Aug 21 08:02:49 PDT 2025


Author: Chao Chen
Date: 2025-08-21T10:02:45-05:00
New Revision: 68d68664280c2d2620ba09c09caba93bfe0a67ce

URL: https://github.com/llvm/llvm-project/commit/68d68664280c2d2620ba09c09caba93bfe0a67ce
DIFF: https://github.com/llvm/llvm-project/commit/68d68664280c2d2620ba09c09caba93bfe0a67ce.diff

LOG: [mlir][XeGPU] add WgToSg distribution pattern for load_matrix and store_matrix.  (#154403)

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
    mlir/include/mlir/Dialect/XeGPU/Utils/XeGPUUtils.h
    mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
    mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
    mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
    mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
    mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
    mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir
    mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
index 3592da4c46364..1481859e94a92 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
@@ -11,6 +11,7 @@
 
 #include "mlir/Bytecode/BytecodeOpInterface.h"
 #include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/IR/BuiltinTypes.h"
 #include "mlir/IR/Dialect.h"
@@ -23,6 +24,7 @@
 namespace mlir {
 namespace xegpu {
 class TensorDescType;
+class DistributeLayoutAttr;
 class LayoutAttr;
 class SliceAttr;
 } // namespace xegpu

diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index a94987885c9e0..b4d696444cc44 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -175,22 +175,36 @@ def XeGPU_FenceScopeAttr:
     let assemblyFormat = "$value";
 }
 
-def LayoutTrait: AttrInterface<"LayoutTrait"> {
+def DistributeLayoutAttr: AttrInterface<"DistributeLayoutAttr"> {
   let cppNamespace = "::mlir::xegpu";
   let description = [{
     Common trait for all XeGPU layouts.
   }];
 
   let methods = [
+    InterfaceMethod<"Check the availability of workgroup level layouts",
+                    "bool",
+                    "isForWorkgroup">,
     InterfaceMethod<"Get the rank of attribute",
                     "int64_t",
                     "getRank">,
+    InterfaceMethod<"Get the num of effective subgroups",
+                    "int64_t",
+                    "getNumSubgroups", (ins), [{
+                        std::optional<SmallVector<int64_t>> sgLayout = llvm::cast<ConcreteAttr>(tablegen_opaque_val).getSgLayoutAsInt();
+                        if (sgLayout.has_value())
+                          return computeProduct(*sgLayout);
+                        return 0;
+                    }], [{}]>,
     InterfaceMethod<"Get the SgLayout field of the attribute as integer array",
                     "std::optional<SmallVector<int64_t>>",
                     "getSgLayoutAsInt">,
     InterfaceMethod<"Get the SgData field of the attribute as integer array",
                     "std::optional<SmallVector<int64_t>>",
                     "getSgDataAsInt">,
+    InterfaceMethod<"Derive a new layout by dropping sgLayout and sgData",
+                    "xegpu::DistributeLayoutAttr",
+                    "dropSgLayoutAndData">,
     InterfaceMethod<[{Delinearizes a linear subgroup ID into its multidimensional
                       indices based on the effective subgroup layout.}],
                     "FailureOr<SmallVector<Value>>",
@@ -206,7 +220,7 @@ def LayoutTrait: AttrInterface<"LayoutTrait"> {
   ];
 }
 
-def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout", [LayoutTrait]> {
+def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout", [DistributeLayoutAttr]> {
   let summary = [{
     Describes the data distribution to subgroups and work-items for a tensor
     specified by the tensor descriptor.
@@ -328,12 +342,12 @@ def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout", [LayoutTrait]> {
   ];
 
   let extraClassDeclaration = [{
-    bool isWgLayout() {
+    bool isForWorkgroup() {
       return getSgLayout() != nullptr;
     }
 
-    bool isSgLayout() {
-      return !isWgLayout();
+    bool isForSubgroup() {
+      return !isForWorkgroup();
     }
 
     int64_t getRank() {
@@ -393,7 +407,7 @@ def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout", [LayoutTrait]> {
 }
 
 
-def XeGPU_SliceAttr : XeGPUAttr<"Slice", "slice", [LayoutTrait]> {
+def XeGPU_SliceAttr : XeGPUAttr<"Slice", "slice", [DistributeLayoutAttr]> {
   let summary = [{Describes the data distribution and sharing among subgroups or work-items.}];
 
   let description = [{
@@ -420,7 +434,7 @@ def XeGPU_SliceAttr : XeGPUAttr<"Slice", "slice", [LayoutTrait]> {
   }];
 
   let parameters = (ins
-    "xegpu::LayoutTrait": $parent,
+    "xegpu::DistributeLayoutAttr": $parent,
     "DenseI64ArrayAttr": $dims
   );
 
@@ -438,16 +452,16 @@ def XeGPU_SliceAttr : XeGPUAttr<"Slice", "slice", [LayoutTrait]> {
       return parent.getOrder();
     }
 
-    bool isWgLayout() const {
+    bool isForWorkgroup() const {
       SliceAttr attr = flatten();
       auto parent = dyn_cast<LayoutAttr>(attr.getParent());
-      return parent.isWgLayout();
+      return parent.isForWorkgroup();
     }
 
-    bool isSgLayout() const {
+    bool isForSubgroup() const {
       SliceAttr attr = flatten();
       auto parent = dyn_cast<LayoutAttr>(attr.getParent());
-      return parent.isSgLayout();
+      return parent.isForSubgroup();
     }
 
     /// Returns the SgLayout of the attribute, computed by applying
@@ -474,6 +488,20 @@ def XeGPU_SliceAttr : XeGPUAttr<"Slice", "slice", [LayoutTrait]> {
       return std::nullopt;
     }
 
+    SliceAttr dropSgLayoutAndData() {
+      SliceAttr attr = flatten();
+      auto parent = dyn_cast<LayoutAttr>(attr.getParent());
+      parent = parent.dropSgLayoutAndData();
+      return SliceAttr::get(getContext(), parent, attr.getDims());
+    }
+
+    SliceAttr dropInstData() {
+      SliceAttr attr = flatten();
+      auto parent = dyn_cast<LayoutAttr>(attr.getParent());
+      parent = parent.dropInstData();
+      return SliceAttr::get(getContext(), parent, attr.getDims());
+    }
+
     /// flatten a nested SliceAttr, e.g., for 2-level nested SliceAttr
     /// #xegpu.slice<#xegpu.slice<#xegpu.layout<sg_layout = [4, 8, 12]>, dims = [0]>, dims = [0]>
     /// it will coalese two slice operations and return a simplified SliceAttr

diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index eb54d6887681d..ab471a1f33ef9 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -232,6 +232,14 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
       return static_cast<unsigned>(MemorySpace::Global);
     }
 
+    xegpu::DistributeLayoutAttr getLayoutAttr() {
+      return dyn_cast_if_present<xegpu::DistributeLayoutAttr>(getType().getLayout());
+    }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getTensorDescShape();
+    }
+
   }];
 }
 
@@ -262,6 +270,23 @@ def XeGPU_PrefetchNdOp : XeGPU_Op<"prefetch_nd", []> {
     xegpu::TensorDescType getTensorDescType() {
       return getTensorDesc().getType();
     }
+
+   SmallVector<OpFoldResult> getMixedOffsets() {
+      auto statics = getConstOffsets().value_or(SmallVector<int64_t>());
+      auto dynamics = getOffsets();
+      if (statics.size() == 0 && dynamics.size() == 0)
+        return {};
+      return getMixedValues(statics, dynamics, getContext());
+    }
+
+    xegpu::DistributeLayoutAttr getLayoutAttr() {
+      return dyn_cast_if_present<xegpu::DistributeLayoutAttr>(getTensorDescType().getLayout());
+    }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getTensorDescType().getShape();
+    }
+
   }];
 
   let assemblyFormat = [{
@@ -343,6 +368,24 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
     xegpu::TensorDescType getTensorDescType() {
       return getTensorDesc().getType();
     }
+
+    SmallVector<OpFoldResult> getMixedOffsets() {
+      auto statics = getConstOffsets().value_or(SmallVector<int64_t>());
+      auto dynamics = getOffsets();
+      if (statics.size() == 0 && dynamics.size() == 0)
+        return {};
+      return getMixedValues(statics, dynamics, getContext());
+    }
+
+    xegpu::DistributeLayoutAttr getLayoutAttr() {
+      return dyn_cast_if_present<xegpu::DistributeLayoutAttr>(getTensorDescType().getLayout());
+    }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getTensorDescType().getShape();
+    }
+
+
   }];
 
   let assemblyFormat = [{
@@ -417,6 +460,23 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", [
     xegpu::TensorDescType getTensorDescType() {
       return getTensorDesc().getType();
     }
+
+    SmallVector<OpFoldResult> getMixedOffsets() {
+      auto statics = getConstOffsets().value_or(SmallVector<int64_t>());
+      auto dynamics = getOffsets();
+      if (statics.size() == 0 && dynamics.size() == 0)
+        return {};
+      return getMixedValues(statics, dynamics, getContext());
+    }
+
+    xegpu::DistributeLayoutAttr getLayoutAttr() {
+      return dyn_cast_if_present<xegpu::DistributeLayoutAttr>(getTensorDescType().getLayout());
+    }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getTensorDescType().getShape();
+    }
+
   }];
 
    let assemblyFormat = [{
@@ -640,6 +700,7 @@ def XeGPU_PrefetchOp : XeGPU_Op<"prefetch", []> {
     xegpu::TensorDescType getTensorDescType() {
       return dyn_cast<xegpu::TensorDescType>(getSourceType());
     }
+
   }];
 
   let assemblyFormat = [{
@@ -1150,7 +1211,7 @@ def XeGPU_LoadMatrixOp: XeGPU_Op<"load_matrix", [MemoryEffects<[MemRead]>,
   let arguments = (ins XeGPU_MemDesc:$mem_desc,
     Variadic<Index>: $offsets,
     DenseI64ArrayAttr: $const_offsets,
-    OptionalAttr<LayoutTrait>:$layout
+    OptionalAttr<DistributeLayoutAttr>:$layout
   );
   let results = (outs XeGPU_ValueType:$res);
   let assemblyFormat = [{
@@ -1175,12 +1236,16 @@ def XeGPU_LoadMatrixOp: XeGPU_Op<"load_matrix", [MemoryEffects<[MemRead]>,
 
   let builders = [
     OpBuilder<(ins "Type":$res, "TypedValue<MemDescType>": $mem_desc,
-                    "llvm::ArrayRef<OpFoldResult>": $offsets, "LayoutTrait": $layout)>,
+                    "llvm::ArrayRef<OpFoldResult>": $offsets, "DistributeLayoutAttr": $layout)>,
   ];
   let extraClassDeclaration = [{
     SmallVector<OpFoldResult> getMixedOffsets() {
       return getMixedValues(getConstOffsets(), getOffsets(), getContext());
     }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getRes().getType().getShape();
+    }
   }];
 
   let hasVerifier = 1;
@@ -1194,7 +1259,7 @@ def XeGPU_StoreMatrixOp: XeGPU_Op<"store_matrix", [MemoryEffects<[MemWrite]>,
     XeGPU_MemDesc:$mem_desc,
     Variadic<Index>: $offsets,
     DenseI64ArrayAttr: $const_offsets,
-    OptionalAttr<LayoutTrait>:$layout
+    OptionalAttr<DistributeLayoutAttr>:$layout
   );
   let assemblyFormat = [{ $data `,` $mem_desc `` custom<DynamicIndexList>($offsets, $const_offsets)
                           prop-dict attr-dict `` `:` type(operands)}];
@@ -1213,12 +1278,17 @@ def XeGPU_StoreMatrixOp: XeGPU_Op<"store_matrix", [MemoryEffects<[MemWrite]>,
   }];
   let builders = [
     OpBuilder<(ins "Value" : $data, "TypedValue<MemDescType>": $mem_desc,
-                   "llvm::ArrayRef<OpFoldResult>": $offsets, "LayoutTrait": $layout)>,
+                   "llvm::ArrayRef<OpFoldResult>": $offsets, "DistributeLayoutAttr": $layout)>,
   ];
   let extraClassDeclaration = [{
     SmallVector<OpFoldResult> getMixedOffsets() {
       return getMixedValues(getConstOffsets(), getOffsets(), getContext());
     }
+
+    ArrayRef<int64_t> getDataShape() {
+      return getData().getType().getShape();
+    }
+
   }];
 
   let hasVerifier = 1;

diff  --git a/mlir/include/mlir/Dialect/XeGPU/Utils/XeGPUUtils.h b/mlir/include/mlir/Dialect/XeGPU/Utils/XeGPUUtils.h
index db8608c6d20b8..b2b2d3ab85231 100644
--- a/mlir/include/mlir/Dialect/XeGPU/Utils/XeGPUUtils.h
+++ b/mlir/include/mlir/Dialect/XeGPU/Utils/XeGPUUtils.h
@@ -10,6 +10,7 @@
 #define MLIR_DIALECT_XEGPU_UTILS_XEGPUUTILS_H_
 
 #include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/OpDefinition.h"
 namespace mlir {
 
 class VectorType;
@@ -128,6 +129,20 @@ void doSCFStructuralTypeConversionWithTensorType(Operation *op,
 /// if no GPU module parent or XeVM target attribute exists.
 std::optional<std::string> getChipStr(Operation *op);
 
+/// Generates element-wise addition ops of two arrays with automatic alignment.
+/// When the input arrays have 
diff erent sizes, the shorter array is
+/// right-aligned with the longer array, and the unmatched leading elements from
+/// the longer array are preserved unchanged. This is commonly used for offset
+/// computation where higher-dimensional offsets need to be added to
+/// lower-dimensional adjustments.
+///
+/// Example:
+///   lhs = [l1, l2, l3], rhs = [r1, r2]
+///   Result: [11, l2+r1, l3+r2]
+SmallVector<OpFoldResult> addWithRightAligned(OpBuilder &builder, Location loc,
+                                              ArrayRef<OpFoldResult> lhs,
+                                              ArrayRef<OpFoldResult> rhs);
+
 } // namespace xegpu
 
 } // namespace mlir

diff  --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
index 8ea8cb1f45972..a2d708be0e937 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -271,7 +271,7 @@ LayoutAttr::delinearizeSubgroupId(OpBuilder &builder, Location loc,
                                   Value linearId) {
   // delinearizeSubgroupId is only available for
   // workgroup-level layout attribute
-  if (!isWgLayout())
+  if (!isForWorkgroup())
     return failure();
 
   // TODO: handle order attribute
@@ -290,12 +290,13 @@ LayoutAttr::delinearizeSubgroupId(OpBuilder &builder, Location loc,
   return affine::delinearizeIndex(builder, loc, linearId, dims);
 }
 
-/// Implements LayoutTrait::getOffsets to generate instructions for
-/// computing multi-dimensional offsets when distributed by LayoutAttr.
+/// Implements DistributeLayoutAttr::getOffsets to generate
+/// instructions for computing multi-dimensional offsets when distributed by
+/// LayoutAttr.
 FailureOr<SmallVector<SmallVector<Value>>>
 LayoutAttr::getOffsets(OpBuilder &builder, Location loc, Value linearId,
                        ArrayRef<int64_t> shape) {
-  if (!isWgLayout())
+  if (!isForWorkgroup())
     return failure();
 
   SmallVector<int64_t> sgLayout = getSgLayoutAsInt().value();
@@ -322,7 +323,7 @@ LayoutAttr::getOffsets(OpBuilder &builder, Location loc, Value linearId,
 //===----------------------------------------------------------------------===//
 LogicalResult
 SliceAttr::verify(llvm::function_ref<InFlightDiagnostic()> emitError,
-                  xegpu::LayoutTrait parent, DenseI64ArrayAttr dims) {
+                  xegpu::DistributeLayoutAttr parent, DenseI64ArrayAttr dims) {
   if (!parent || !dims)
     return emitError() << "expected parent layout and dims attribute";
 
@@ -340,7 +341,7 @@ SliceAttr::verify(llvm::function_ref<InFlightDiagnostic()> emitError,
 }
 
 SliceAttr SliceAttr::flatten() const {
-  xegpu::LayoutTrait parent = getParent();
+  xegpu::DistributeLayoutAttr parent = getParent();
   SmallVector<DenseI64ArrayAttr> slicedDims({getDims()});
 
   while (auto sliceAttr = dyn_cast<xegpu::SliceAttr>(parent)) {
@@ -375,13 +376,14 @@ SliceAttr::delinearizeSubgroupId(OpBuilder &builder, Location loc,
   return parent.delinearizeSubgroupId(builder, loc, linearId);
 }
 
-/// Implements LayoutTrait::getOffsets to generate instructions for
-/// computing multi-dimensional offsets when distributed by SliceAttr.
+/// Implements DistributeLayoutAttr::getOffsets to generate
+/// instructions for computing multi-dimensional offsets when distributed by
+/// SliceAttr.
 FailureOr<SmallVector<SmallVector<Value>>>
 SliceAttr::getOffsets(OpBuilder &builder, Location loc, Value linearId,
                       ArrayRef<int64_t> shape) {
   assert(getRank() == static_cast<int64_t>(shape.size()) && "invalid shape.");
-  if (!isWgLayout())
+  if (!isForWorkgroup())
     return failure();
 
   SmallVector<int64_t> sgLayout = getSgLayoutAsInt().value();

diff  --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 906c71d8b8dad..c8d180b973f05 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -938,8 +938,8 @@ LogicalResult ConvertLayoutOp::verify() {
 
   // both input and target layouts should be WgLayout or SgLayout at the same
   // time.
-  if ((!srcLayout.isWgLayout() || !resLayout.isWgLayout()) &&
-      (!srcLayout.isSgLayout() || !resLayout.isSgLayout()))
+  if ((!srcLayout.isForWorkgroup() || !resLayout.isForWorkgroup()) &&
+      (!srcLayout.isForSubgroup() || !resLayout.isForSubgroup()))
     return emitOpError("expected input layout and target layout be WgLayout or "
                        "SgLayout at the same time.");
 
@@ -984,7 +984,7 @@ void ConvertLayoutOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
 void LoadMatrixOp::build(OpBuilder &builder, OperationState &state, Type res,
                          TypedValue<MemDescType> memDesc,
                          llvm::ArrayRef<OpFoldResult> offsets,
-                         LayoutTrait layout) {
+                         DistributeLayoutAttr layout) {
   llvm::SmallVector<Value> dynamicOffsets;
   llvm::SmallVector<int64_t> staticOffsets;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
@@ -1014,7 +1014,7 @@ LogicalResult LoadMatrixOp::verify() {
 void StoreMatrixOp::build(OpBuilder &builder, OperationState &state, Value data,
                           TypedValue<MemDescType> memDesc,
                           llvm::ArrayRef<OpFoldResult> offsets,
-                          LayoutTrait layout) {
+                          DistributeLayoutAttr layout) {
   llvm::SmallVector<Value> dynamicOffsets;
   llvm::SmallVector<int64_t> staticOffsets;
   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);

diff  --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
index d82c541f31359..b3144e4c1e55d 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
@@ -141,7 +141,7 @@ XeGPUBlockingPass::getTileShape(const T &operandOrResult) const {
     value = (Value)operandOrResult;
 
   xegpu::LayoutAttr layout = xegpu::getLayoutAttr(operandOrResult);
-  if (layout && layout.isSgLayout()) {
+  if (layout && layout.isForSubgroup()) {
     if (auto inst_data = layout.getInstData())
       return llvm::to_vector_of<int64_t>(inst_data.asArrayRef());
 
@@ -205,12 +205,12 @@ bool XeGPUBlockingPass::needsUnroll(Operation *op) const {
   bool hasWgLayoutOperands =
       llvm::any_of(op->getOpOperands(), [](OpOperand &opr) {
         xegpu::LayoutAttr layout = xegpu::getLayoutAttr(opr);
-        return layout && layout.isWgLayout();
+        return layout && layout.isForWorkgroup();
       });
   bool hasWgLayoutResults =
       llvm::any_of(op->getOpResults(), [](OpResult result) {
         xegpu::LayoutAttr layout = xegpu::getLayoutAttr(result);
-        return layout && layout.isWgLayout();
+        return layout && layout.isForWorkgroup();
       });
   if (hasWgLayoutOperands || hasWgLayoutResults) {
     LDBG() << "skip unrolling for op with workgroup level layout: " << *op;
@@ -272,7 +272,7 @@ void XeGPUBlockingPass::runOnOperation() {
 
         auto layout =
             llvm::dyn_cast_if_present<xegpu::LayoutAttr>(type.getEncoding());
-        if (layout && layout.isWgLayout())
+        if (layout && layout.isForWorkgroup())
           return failure();
 
         int count;
@@ -289,7 +289,7 @@ void XeGPUBlockingPass::runOnOperation() {
         ArrayRef<int64_t> shape = type.getShape();
 
         xegpu::LayoutAttr layout = type.getLayoutAttr();
-        if (layout && layout.isWgLayout())
+        if (layout && layout.isForWorkgroup())
           return failure();
 
         int count;

diff  --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
index 8f1208e77ca5d..93b4efcd125ec 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUWgToSgDistribute.cpp
@@ -34,38 +34,29 @@ using namespace mlir;
 
 namespace {
 
-// Check if there is sg id range attached to the scf.if op.
-static bool isSgIdRangeSpecified(Operation *op, int64_t &startOfRange,
-                                 int64_t &endOfRange) {
-  Operation *parent = op->getParentOp();
-  // Find the outermost scf::IfOp with xegpu.sg_id_range.
+// Retrieve the RangeAttr if it is specified.
+static xegpu::RangeAttr getRangeSpecAttr(Operation *op) {
+  Operation *parent = op->getParentOfType<scf::IfOp>();
   while (parent) {
-    if (auto ifOp = dyn_cast<scf::IfOp>(parent)) {
-      if (auto attr = llvm::dyn_cast_or_null<xegpu::RangeAttr>(
-              ifOp->getAttr("sg_id_range"))) {
-        startOfRange = attr.getStart().getInt();
-        endOfRange = attr.getEnd().getInt();
-        break;
-      }
-    }
-    parent = parent->getParentOp();
+    if (auto attr = llvm::dyn_cast_if_present<xegpu::RangeAttr>(
+            parent->getAttr("sg_id_range")))
+      return attr;
+    parent = parent->getParentOfType<scf::IfOp>();
   }
-  // Return false if startOfRange is 0
-  return (startOfRange > 0 && endOfRange > startOfRange);
+  return {};
 }
 
 static std::pair<SmallVector<int64_t>, int>
-getSgShapeAndCount(ArrayRef<int64_t> shape, xegpu::LayoutAttr layout) {
+getSgShapeAndCount(ArrayRef<int64_t> shape,
+                   xegpu::DistributeLayoutAttr layout) {
   int count = 1;
   SmallVector<int64_t> sgShape(shape);
-
-  if (layout && layout.isWgLayout()) {
-    DenseI32ArrayAttr sgLayoutAttr = layout.getSgLayout();
-    auto sgLayout = llvm::to_vector_of<int64_t>(sgLayoutAttr.asArrayRef());
-    if (DenseI32ArrayAttr sgDataAttr = layout.getSgData())
-      sgShape = llvm::to_vector_of<int64_t>(sgDataAttr.asArrayRef());
-    else
-      sgShape = computeShapeRatio(shape, sgLayout).value_or(sgShape);
+  if (layout && layout.isForWorkgroup()) {
+    SmallVector<int64_t> sgLayout = layout.getSgLayoutAsInt().value();
+    if (auto maybeSgData = layout.getSgDataAsInt())
+      sgShape = *maybeSgData;
+    else if (auto maybeDerivedSgData = computeShapeRatio(shape, sgLayout))
+      sgShape = *maybeDerivedSgData;
     SmallVector<int64_t> distUnit = computeElementwiseMul(sgLayout, sgShape);
     // Clamp distUnit to the original shape to handle cases where data is
     // shared among subgroups, which may cause distUnit to exceed the original
@@ -77,6 +68,67 @@ getSgShapeAndCount(ArrayRef<int64_t> shape, xegpu::LayoutAttr layout) {
   return std::make_pair(sgShape, count);
 }
 
+/// Utility helper for deriving a list of offsets for each sub-TensorDescs
+/// or sub-MemDescs to be accessed by current subgroup (sgId) based on the
+/// associated distribute layout attribute, the shape, subgroup id and the
+/// original offsets of the op
+template <
+    typename OpType,
+    typename = std::enable_if_t<llvm::is_one_of<
+        OpType, xegpu::CreateNdDescOp, xegpu::LoadNdOp, xegpu::StoreNdOp,
+        xegpu::PrefetchNdOp, xegpu::LoadMatrixOp, xegpu::StoreMatrixOp>::value>>
+static LogicalResult
+genOffsetsList(ConversionPatternRewriter &rewriter, OpType op,
+               SmallVector<SmallVector<OpFoldResult>> &offsetsList) {
+  Location loc = op.getLoc();
+  SmallVector<OpFoldResult> origOffsets = op.getMixedOffsets();
+  // not applicable to ops without offsets operands.
+  if (origOffsets.empty())
+    return failure();
+
+  // not applicable to ops without workgroup layout attributes
+  xegpu::DistributeLayoutAttr layout = op.getLayoutAttr();
+  if (!layout || !layout.isForWorkgroup())
+    return failure();
+
+  Value sgId = rewriter.create<gpu::SubgroupIdOp>(loc, /*upper_bound=*/nullptr);
+
+  // verify and adjust the sgId if the range specifier is present
+  xegpu::RangeAttr sgIdRange = getRangeSpecAttr(op);
+  if (sgIdRange) {
+    int64_t startOfRange = sgIdRange.getStart().getInt();
+    int64_t endOfRange = sgIdRange.getEnd().getInt();
+    // verify the RangeAttr against the layout attribute
+    if (layout.getNumSubgroups() != endOfRange - startOfRange)
+      return rewriter.notifyMatchFailure(
+          op, "sg_layout size must match the sg_id_range");
+    // adjust the sgId if necessary
+    if (startOfRange > 0) {
+      Value startOfRangeVal =
+          rewriter.create<arith::ConstantIndexOp>(loc, startOfRange);
+      sgId = rewriter.create<index::SubOp>(loc, sgId, startOfRangeVal);
+    }
+  }
+
+  // Compute the list of subgroup-relative offsets for sub-tensors or sub-memory
+  // descriptors to be accessed, based on the layout information.
+  ArrayRef<int64_t> wgShape = op.getDataShape();
+  auto maybeDescOffsets = layout.getOffsets(rewriter, loc, sgId, wgShape);
+  if (failed(maybeDescOffsets))
+    return failure();
+
+  // Compute the final global offsets for each accessed sub-tensor
+  // or sub-memory descriptor.
+  for (const auto &sgOffsets : *maybeDescOffsets) {
+    SmallVector<OpFoldResult> newOffsets = xegpu::addWithRightAligned(
+        rewriter, loc, getAsOpFoldResult(sgOffsets), origOffsets);
+    offsetsList.push_back(std::move(newOffsets));
+  }
+
+  // callback(offsetsList);
+  return success();
+}
+
 /// This pattern transforms the CreateNdDescOp to create a subgroup descriptor
 /// from a workgroup descriptor. It replaces the offsets and sizes with
 /// appropriate values for the subgroup.
@@ -128,79 +180,30 @@ struct WgToSgCreateNdOp : public OpConversionPattern<xegpu::CreateNdDescOp> {
   LogicalResult
   matchAndRewrite(xegpu::CreateNdDescOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-
-    // Ensure that the op has explicit offsets specified (either dynamic or
-    // constant).
-    if (op.getMixedOffsets().empty())
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
       return failure();
 
-    Location loc = op.getLoc();
     MLIRContext *ctx = op.getContext();
     xegpu::TensorDescType tdescTy = op.getType();
-    auto layout = dyn_cast<xegpu::LayoutAttr>(tdescTy.getLayout());
-    if (!layout)
-      return failure();
-    Type elemTy = tdescTy.getElementType();
     ArrayRef<int64_t> wgShape = tdescTy.getShape();
-    // sgLayout must be present for workgroup-level distribution.
-    SmallVector<int64_t> sgLayout;
-    if (auto sgLayoutAttr = layout.getSgLayout())
-      sgLayout = llvm::to_vector_of<int64_t>(sgLayoutAttr.asArrayRef());
-    else
-      return rewriter.notifyMatchFailure(
-          op, "sgLayout attribute is required in layout");
-
-    // Get the subgroup ID
-    Value linearSgId =
-        gpu::SubgroupIdOp::create(rewriter, loc, /*upper_bound=*/nullptr);
-
-    int64_t startOfRange = -1, endOfRange = -1;
-    bool sgIdRangeSpecified =
-        isSgIdRangeSpecified(op, startOfRange, endOfRange);
-
-    if (sgIdRangeSpecified) {
-      int64_t sgCount = endOfRange - startOfRange;
-      if (computeProduct(sgLayout) != sgCount)
-        return rewriter.notifyMatchFailure(
-            op, "sg_layout size must match the sg_id_range");
-      // Subtract startOfRange from the original subgroup id to get
-      // the adjusted sg id
-      Value startOfRangeVal =
-          arith::ConstantIndexOp::create(rewriter, loc, startOfRange);
-      linearSgId =
-          rewriter.createOrFold<index::SubOp>(loc, linearSgId, startOfRangeVal);
-    }
-
-    auto maybeTdescOffsets =
-        layout.getOffsets(rewriter, loc, linearSgId, wgShape);
-    if (failed(maybeTdescOffsets))
-      return failure();
-
+    Type elemTy = tdescTy.getElementType();
+    xegpu::DistributeLayoutAttr layout = op.getLayoutAttr();
     SmallVector<int64_t> sgShape = getSgShapeAndCount(wgShape, layout).first;
-    xegpu::TensorDescType newTdescTy =
+    auto newTdescTy =
         xegpu::TensorDescType::get(ctx, sgShape, elemTy, tdescTy.getEncoding(),
                                    layout.dropSgLayoutAndData());
 
-    SmallVector<Value> newCreateNdOps;
-    SmallVector<OpFoldResult> origOffsets = op.getMixedOffsets();
-
-    for (auto tdescOffsets : *maybeTdescOffsets) {
-      SmallVector<OpFoldResult> sgOffsets;
-      size_t rank = tdescOffsets.size();
-      for (size_t i = 0; i < rank; i++) {
-        size_t idx = origOffsets.size() - rank + i;
-        Value add = rewriter.createOrFold<index::AddOp>(
-            loc, tdescOffsets[i],
-            getValueOrCreateConstantIndexOp(rewriter, loc, origOffsets[idx]));
-        sgOffsets.push_back(add);
-      }
-
+    SmallVector<Value> newOps;
+    for (auto offsets : offsetsList) {
       auto newOp = xegpu::CreateNdDescOp::create(
-          rewriter, loc, newTdescTy, op.getSource(), sgOffsets,
+          rewriter, op.getLoc(), newTdescTy, op.getSource(), offsets,
           op.getMixedSizes(), op.getMixedStrides());
-      newCreateNdOps.push_back(newOp);
+
+      newOps.push_back(newOp);
     }
-    rewriter.replaceOpWithMultiple(op, {newCreateNdOps});
+    rewriter.replaceOpWithMultiple(op, {newOps});
+
     return success();
   }
 };
@@ -223,7 +226,7 @@ struct WgToSgCreateNdOpNoOffset
     MLIRContext *ctx = op.getContext();
     xegpu::TensorDescType tdescTy = op.getType();
     auto layout = dyn_cast<xegpu::LayoutAttr>(tdescTy.getLayout());
-    if (!layout || !layout.isWgLayout())
+    if (!layout || !layout.isForWorkgroup())
       return failure();
 
     Type elemTy = tdescTy.getElementType();
@@ -254,12 +257,10 @@ struct WgToSgLoadNdOp : public OpConversionPattern<xegpu::LoadNdOp> {
   LogicalResult
   matchAndRewrite(xegpu::LoadNdOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-    SmallVector<Value> newLoadOps;
-
-    int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
-    if ((offsetSize != 0) || op.getConstOffsetsAttr())
+    if (!op.getMixedOffsets().empty())
       return failure();
 
+    SmallVector<Value> newLoadOps;
     for (auto src : adaptor.getTensorDesc()) {
       xegpu::TensorDescType tdescTy =
           dyn_cast<xegpu::TensorDescType>(src.getType());
@@ -282,9 +283,7 @@ struct WgToSgStoreNdOp : public OpConversionPattern<xegpu::StoreNdOp> {
   LogicalResult
   matchAndRewrite(xegpu::StoreNdOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-
-    int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
-    if ((offsetSize != 0) || op.getConstOffsetsAttr())
+    if (!op.getMixedOffsets().empty())
       return failure();
 
     for (auto [v, t] : llvm::zip(adaptor.getValue(), adaptor.getTensorDesc()))
@@ -296,100 +295,6 @@ struct WgToSgStoreNdOp : public OpConversionPattern<xegpu::StoreNdOp> {
   }
 };
 
-// Utility function to compute global offsets for subgroup operations.
-// Returns a vector of new offsets for each subgroup, given the original op's
-// offsets and subgroup relative offsets.
-static SmallVector<SmallVector<OpFoldResult>>
-computeOffsets(Operation *op, ArrayRef<SmallVector<Value>> sgOffsetsList,
-               ArrayRef<OpFoldResult> origOffsets,
-               ConversionPatternRewriter &rewriter) {
-  SmallVector<SmallVector<OpFoldResult>> finalOffsets;
-  Location loc = op->getLoc();
-  for (const auto &sgOffsets : sgOffsetsList) {
-    SmallVector<OpFoldResult> newOffsets;
-    size_t rank = sgOffsets.size();
-    for (size_t i = 0; i < rank; i++) {
-      size_t idx = origOffsets.size() - rank + i;
-      Value add = rewriter.createOrFold<index::AddOp>(
-          loc, sgOffsets[i],
-          getValueOrCreateConstantIndexOp(rewriter, loc, origOffsets[idx]));
-      newOffsets.push_back(add);
-    }
-    finalOffsets.push_back(std::move(newOffsets));
-  }
-  return finalOffsets;
-}
-
-// Utility function to get sgShape, sgOffsetList for a given
-// op.
-template <typename OpTy, typename AdaptorTy>
-LogicalResult getSgOffsets(OpTy op, AdaptorTy adaptor,
-                           ConversionPatternRewriter &rewriter,
-                           SmallVector<int64_t> &sgShape,
-                           SmallVector<SmallVector<Value>> &sgOffsetList) {
-  int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
-  if (offsetSize == 0 && (!op.getConstOffsetsAttr()))
-    return failure();
-
-  Location loc = op.getLoc();
-  Value tdesc = op.getTensorDesc();
-  auto tdescTy = dyn_cast<xegpu::TensorDescType>(tdesc.getType());
-  if (!tdescTy)
-    return failure();
-  auto layout = dyn_cast<xegpu::LayoutAttr>(tdescTy.getLayout());
-  if (!layout)
-    return failure();
-
-  SmallVector<int64_t> sgLayout;
-  auto sgLayoutAttr = layout.getSgLayout();
-  if (!sgLayoutAttr)
-    return rewriter.notifyMatchFailure(
-        op, "sgLayout attribute is required in layout");
-  sgLayout = llvm::to_vector_of<int64_t>(sgLayoutAttr.asArrayRef());
-
-  ArrayRef<int64_t> wgShape = tdescTy.getShape();
-  int count;
-  std::tie(sgShape, count) = getSgShapeAndCount(wgShape, layout);
-
-  // Get the subgroup ID
-  Value linearSgId =
-      gpu::SubgroupIdOp::create(rewriter, loc, /*upper_bound=*/nullptr);
-
-  int64_t startOfRange = -1, endOfRange = -1;
-  bool sgIdRangeSpecified = isSgIdRangeSpecified(op, startOfRange, endOfRange);
-
-  if (sgIdRangeSpecified) {
-    int64_t sgCount = endOfRange - startOfRange;
-    if (computeProduct(sgLayout) != sgCount)
-      return rewriter.notifyMatchFailure(
-          op, "sg_layout size must match the sg_id_range");
-    Value startOfRangeVal =
-        rewriter.create<arith::ConstantIndexOp>(loc, startOfRange);
-    linearSgId =
-        rewriter.createOrFold<index::SubOp>(loc, linearSgId, startOfRangeVal);
-  }
-
-  auto sgOffsets = layout.getOffsets(rewriter, loc, linearSgId, wgShape);
-  if (failed(sgOffsets))
-    return failure();
-
-  sgOffsetList = *sgOffsets;
-  return success();
-}
-
-template <typename OpTy>
-SmallVector<OpFoldResult> getOffsets(OpTy op,
-                                     ConversionPatternRewriter &rewriter) {
-  SmallVector<OpFoldResult> origOffsets;
-  if (auto constOffsets = op.getConstOffsetsAttr()) {
-    for (auto attr : constOffsets.asArrayRef())
-      origOffsets.push_back(rewriter.getIndexAttr(attr));
-  }
-  for (auto v : op.getOffsets())
-    origOffsets.push_back(v);
-  return origOffsets;
-}
-
 // This pattern transforms the LoadNdOp with explicit offsets to load
 // subgroup data.
 struct WgToSgLoadNdOpWithOffset : public OpConversionPattern<xegpu::LoadNdOp> {
@@ -398,33 +303,24 @@ struct WgToSgLoadNdOpWithOffset : public OpConversionPattern<xegpu::LoadNdOp> {
   matchAndRewrite(xegpu::LoadNdOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
 
-    SmallVector<int64_t> sgShape;
-    SmallVector<SmallVector<Value>> sgOffsetList;
-
-    // Do the distribution from workgroup to subgroup and get subgroup offsets
-    if (failed(getSgOffsets(op, adaptor, rewriter, sgShape, sgOffsetList)))
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
       return failure();
 
-    // Get the original workgroup offsets
-    SmallVector<OpFoldResult> origOffsets = getOffsets(op, rewriter);
-
-    // Calculate the final offsets for each subgroup
-    auto finalOffsets = computeOffsets(op, sgOffsetList, origOffsets, rewriter);
-
-    SmallVector<Value> newLoadOps;
-    for (auto [offsets, tdesc] :
-         llvm::zip(finalOffsets, adaptor.getTensorDesc())) {
-      VectorType newResTy = VectorType::get(
-          sgShape,
-          dyn_cast<xegpu::TensorDescType>(tdesc.getType()).getElementType());
-      auto newLoadOp = rewriter.create<xegpu::LoadNdOp>(
-          op.getLoc(), newResTy, tdesc, offsets,
-          /*packed=*/nullptr,
-          /*transpose=*/nullptr, op.getL1HintAttr(), op.getL2HintAttr(),
-          op.getL3HintAttr());
-      newLoadOps.push_back(newLoadOp);
+    SmallVector<Value> newOps;
+    for (auto [tdesc, offsets] :
+         llvm::zip(adaptor.getTensorDesc(), offsetsList)) {
+      auto tdescTy = dyn_cast<xegpu::TensorDescType>(tdesc.getType());
+      VectorType newResTy =
+          VectorType::get(tdescTy.getShape(), tdescTy.getElementType());
+      auto newOp = xegpu::LoadNdOp::create(
+          rewriter, op.getLoc(), newResTy, tdesc, offsets,
+          /*packed = */ nullptr, /*transpose = */ nullptr, op.getL1HintAttr(),
+          op.getL2HintAttr(), op.getL3HintAttr());
+      newOps.push_back(newOp);
     }
-    rewriter.replaceOpWithMultiple(op, {newLoadOps});
+    rewriter.replaceOpWithMultiple(op, {newOps});
+
     return success();
   }
 };
@@ -437,27 +333,18 @@ struct WgToSgStoreNdOpWithOffset
   LogicalResult
   matchAndRewrite(xegpu::StoreNdOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-
-    SmallVector<int64_t> sgShape;
-    SmallVector<SmallVector<Value>> sgOffsetList;
-
-    // Do the distribution from workgroup to subgroup and get subgroup offsets
-    if (failed(getSgOffsets(op, adaptor, rewriter, sgShape, sgOffsetList)))
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
       return failure();
 
-    // Get the original workgroup offsets
-    SmallVector<OpFoldResult> origOffsets = getOffsets(op, rewriter);
-
-    // Calculate the final offsets for each subgroup
-    auto finalOffsets = computeOffsets(op, sgOffsetList, origOffsets, rewriter);
-
-    for (auto [offsets, tdesc, value] :
-         llvm::zip(finalOffsets, adaptor.getTensorDesc(), adaptor.getValue())) {
-      rewriter.create<xegpu::StoreNdOp>(op.getLoc(), value, tdesc, offsets,
+    for (auto [v, tdesc, offsets] :
+         llvm::zip(adaptor.getValue(), adaptor.getTensorDesc(), offsetsList)) {
+      rewriter.create<xegpu::StoreNdOp>(op.getLoc(), v, tdesc, offsets,
                                         op.getL1HintAttr(), op.getL2HintAttr(),
                                         op.getL3HintAttr());
     }
     rewriter.eraseOp(op);
+
     return success();
   }
 };
@@ -470,27 +357,18 @@ struct WgToSgPrefetchNdOpWithOffset
   LogicalResult
   matchAndRewrite(xegpu::PrefetchNdOp op, OneToNOpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-
-    SmallVector<int64_t> sgShape;
-    SmallVector<SmallVector<Value>> sgOffsetList;
-
-    // Do the distribution from workgroup to subgroup and get subgroup offsets
-    if (failed(getSgOffsets(op, adaptor, rewriter, sgShape, sgOffsetList)))
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
       return failure();
 
-    // Get the original workgroup offsets
-    SmallVector<OpFoldResult> origOffsets = getOffsets(op, rewriter);
-
-    // Calculate the final offsets for each subgroup
-    auto finalOffsets = computeOffsets(op, sgOffsetList, origOffsets, rewriter);
-
-    for (auto [offsets, tdesc] :
-         llvm::zip(finalOffsets, adaptor.getTensorDesc())) {
+    for (auto [tdesc, offsets] :
+         llvm::zip(adaptor.getTensorDesc(), offsetsList)) {
       rewriter.create<xegpu::PrefetchNdOp>(
           op.getLoc(), tdesc, offsets, op.getL1HintAttr(), op.getL2HintAttr(),
           op.getL3HintAttr());
     }
     rewriter.eraseOp(op);
+
     return success();
   }
 };
@@ -736,7 +614,8 @@ struct WgToSgConvertLayoutOp
     xegpu::LayoutAttr input = op.getInputLayout();
     xegpu::LayoutAttr target = op.getTargetLayout();
 
-    if (!input || !target || !input.isWgLayout() || !target.isWgLayout())
+    if (!input || !target || !input.isForWorkgroup() ||
+        !target.isForWorkgroup())
       return rewriter.notifyMatchFailure(
           op, "Input and target layouts must have subgroup layout");
 
@@ -884,6 +763,56 @@ struct WgToSgArithConstantOp : public OpConversionPattern<arith::ConstantOp> {
   }
 };
 
+struct WgToSgLoadMatrixOp : public OpConversionPattern<xegpu::LoadMatrixOp> {
+  using OpConversionPattern<xegpu::LoadMatrixOp>::OpConversionPattern;
+  LogicalResult
+  matchAndRewrite(xegpu::LoadMatrixOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
+      return failure();
+
+    ArrayRef<int64_t> wgShape = op.getDataShape();
+    VectorType valueTy = op.getRes().getType();
+    Type elemTy = valueTy.getElementType();
+
+    xegpu::DistributeLayoutAttr layout = op.getLayoutAttr();
+    SmallVector<int64_t> sgShape = getSgShapeAndCount(wgShape, layout).first;
+    VectorType newResTy = VectorType::get(sgShape, elemTy);
+    SmallVector<Value> newOps;
+    for (auto offsets : offsetsList) {
+      auto newOp = rewriter.create<xegpu::LoadMatrixOp>(
+          op.getLoc(), newResTy, op.getMemDesc(), offsets,
+          layout.dropSgLayoutAndData());
+      newOps.push_back(newOp);
+    }
+    rewriter.replaceOpWithMultiple(op, {newOps});
+
+    return success();
+  }
+};
+
+struct WgToSgStoreMatrixOp : public OpConversionPattern<xegpu::StoreMatrixOp> {
+  using OpConversionPattern<xegpu::StoreMatrixOp>::OpConversionPattern;
+  LogicalResult
+  matchAndRewrite(xegpu::StoreMatrixOp op, OneToNOpAdaptor adaptor,
+                  ConversionPatternRewriter &rewriter) const override {
+
+    SmallVector<SmallVector<OpFoldResult>> offsetsList;
+    if (failed(genOffsetsList(rewriter, op, offsetsList)))
+      return failure();
+
+    xegpu::DistributeLayoutAttr layout = op.getLayoutAttr();
+    for (auto [v, offsets] : llvm::zip(adaptor.getData(), offsetsList))
+      rewriter.create<xegpu::StoreMatrixOp>(op.getLoc(), v, op.getMemDesc(),
+                                            offsets,
+                                            layout.dropSgLayoutAndData());
+    rewriter.eraseOp(op);
+    return success();
+  }
+};
+
 } // namespace
 
 namespace mlir {
@@ -895,7 +824,8 @@ void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
            WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp,
            WgToSgPrefetchNdOpWithOffset, UnrealizedConversionCastOpPattern,
            WgToSgElementwiseOp, WgToSgVectorBroadcastOp, WgToSgConvertLayoutOp,
-           WgToSgArithConstantOp>(patterns.getContext());
+           WgToSgArithConstantOp, WgToSgLoadMatrixOp, WgToSgStoreMatrixOp>(
+          patterns.getContext());
 }
 } // namespace xegpu
 } // namespace mlir
@@ -985,8 +915,8 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
     return xegpu::TensorDescType();
   };
 
-  auto isLegal = [&](xegpu::LayoutAttr layout) -> bool {
-    return !layout || !layout.isWgLayout();
+  auto isLegal = [&](xegpu::DistributeLayoutAttr layout) -> bool {
+    return !layout || !layout.isForWorkgroup();
   };
 
   target.addDynamicallyLegalOp<xegpu::CreateNdDescOp, xegpu::LoadNdOp,
@@ -1002,9 +932,14 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
     return isLegal(layout);
   });
 
-  target.addDynamicallyLegalOp<vector::BroadcastOp>(
-      [=](vector::BroadcastOp op) -> bool {
-        return isLegal(xegpu::getLayoutAttr(op.getResult()));
+  target.addDynamicallyLegalOp<xegpu::LoadMatrixOp>(
+      [=](xegpu::LoadMatrixOp op) -> bool {
+        return isLegal(op.getLayoutAttr());
+      });
+
+  target.addDynamicallyLegalOp<xegpu::StoreMatrixOp>(
+      [=](xegpu::StoreMatrixOp op) -> bool {
+        return isLegal(op.getLayoutAttr());
       });
 
   target.addDynamicallyLegalOp<arith::ConstantOp>(
@@ -1015,6 +950,11 @@ void XeGPUWgToSgDistributePass::runOnOperation() {
         return isLegal(xegpu::getLayoutAttr(op.getResult()));
       });
 
+  target.addDynamicallyLegalOp<vector::BroadcastOp>(
+      [=](vector::BroadcastOp op) -> bool {
+        return isLegal(xegpu::getLayoutAttr(op.getResult()));
+      });
+
   target.addDynamicallyLegalOp<xegpu::ConvertLayoutOp>(
       [=](xegpu::ConvertLayoutOp op) -> bool {
         return isLegal(op.getInputLayout()) && isLegal(op.getTargetLayout());

diff  --git a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
index 19eedbac0f76b..6835f64ad8ef7 100644
--- a/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
+++ b/mlir/lib/Dialect/XeGPU/Utils/XeGPUUtils.cpp
@@ -12,6 +12,7 @@
 
 #include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
+#include "mlir/Dialect/Index/IR/IndexOps.h"
 #include "mlir/Dialect/LLVMIR/XeVMDialect.h"
 #include "mlir/Dialect/SCF/Transforms/Patterns.h"
 #include "mlir/Dialect/Utils/IndexingUtils.h"
@@ -40,7 +41,7 @@ mlir::xegpu::getDistributedVectorType(xegpu::TensorDescType tdescTy) {
   auto layout = llvm::dyn_cast_if_present<LayoutAttr>(tdescTy.getLayout());
   // It only works for subgroup level layout, which only has lane_layout
   // and lane_data, and is to distribute a SIMD code into SIMT code.
-  if (!layout || !layout.isSgLayout())
+  if (!layout || !layout.isForSubgroup())
     return failure();
 
   SmallVector<int64_t> laneData(layout.getLaneData().asArrayRef());
@@ -424,3 +425,31 @@ std::optional<std::string> xegpu::getChipStr(Operation *op) {
 
   return std::nullopt;
 }
+
+/// Generates element-wise addition ops of two arrays with automatic alignment.
+/// When the input arrays have 
diff erent sizes, the shorter array is
+/// right-aligned with the longer array, and the unmatched leading elements from
+/// the longer array are preserved unchanged. This is commonly used for offset
+/// computation where higher-dimensional offsets need to be added to
+/// lower-dimensional adjustments.
+///
+/// Example:
+///   lhs = [l1, l2, l3], rhs = [r1, r2]
+///   Result: [11, l2+r1, l3+r2]
+SmallVector<OpFoldResult>
+xegpu::addWithRightAligned(OpBuilder &builder, Location loc,
+                           ArrayRef<OpFoldResult> lhs,
+                           ArrayRef<OpFoldResult> rhs) {
+  // ensure a is longer than b
+  ArrayRef<OpFoldResult> a = lhs.size() >= rhs.size() ? lhs : rhs;
+  ArrayRef<OpFoldResult> b = lhs.size() >= rhs.size() ? rhs : lhs;
+  SmallVector<OpFoldResult> results(a.take_front(a.size() - b.size()));
+  a = a.slice(a.size() - b.size());
+  for (auto [l, r] : llvm::zip(a, b)) {
+    auto lval = getValueOrCreateConstantIndexOp(builder, loc, l);
+    auto rval = getValueOrCreateConstantIndexOp(builder, loc, r);
+    results.push_back(builder.createOrFold<index::AddOp>(loc, lval, rval));
+  }
+  return results;
+  return {};
+}

diff  --git a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir
index 07a0b86223c33..32157a7911f62 100644
--- a/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir
+++ b/mlir/test/Dialect/XeGPU/xegpu-wg-to-sg-unify-ops.mlir
@@ -263,4 +263,62 @@ gpu.module @test_distribution {
   } {sg_id_range = #xegpu.range<[3, 19]>}
   gpu.return
   }
+
+  // CHECK-LABEL: distribute_load_matrix
+  // CHECK-SAME: [[arg0:%.+]]: memref<32768xi8, 3>
+  gpu.func @distribute_load_matrix(%arg0: memref<32768xi8, 3>) {
+    //CHECK: [[mdesc:%.+]] = xegpu.create_mem_desc [[arg0]] : memref<32768xi8, 3> -> !xegpu.mem_desc<64x128xf32>
+    //CHECK: [[sgid:%.+]] = gpu.subgroup_id : index
+    //CHECK: [[c2:%.+]] = arith.constant 2 : index
+    //CHECK: [[c4:%.+]] = arith.constant 4 : index
+    //CHECK: [[c4_0:%.+]] = arith.constant 4 : index
+    //CHECK: [[id_y:%.+]] = affine.apply #map()[[[sgid]]]
+    //CHECK: [[id_x:%.+]] = affine.apply #map1()[[[sgid]]]
+    //CHECK: [[c32:%.+]] = arith.constant 32 : index
+    //CHECK: [[l_off_y:%.+]] = index.mul [[id_y]], [[c32]]
+    //CHECK: [[c32_1:%.+]] = arith.constant 32 : index
+    //CHECK: [[l_off_x:%.+]] = index.mul [[id_x]], [[c32_1]]
+    //CHECK: [[c0:%.+]] = arith.constant 0 : index
+    //CHECK: [[c0_1:%.+]] = arith.constant 0 : index
+    //CHECK: [[l_off_y_0:%.+]] = arith.addi [[l_off_y]], [[c0]] : index
+    //CHECK: [[l_off_x_0:%.+]] = arith.addi [[l_off_x]], [[c0_1]] : index
+    //CHECK: [[c64:%.+]] = arith.constant 64 : index
+    //CHECK: [[off_y:%.+]] = index.remu [[l_off_y_0]], [[c64]]
+    //CHECK: [[c128:%.+]] = arith.constant 128 : index
+    //CHECK: [[off_x:%.+]] = index.remu [[l_off_x_0]], [[c128]]
+    //CHECK: xegpu.load_matrix [[mdesc]][[[off_y]], [[off_x]]] <{layout = #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>}>: !xegpu.mem_desc<64x128xf32>, index, index -> vector<32x32xf32>
+    %0 = xegpu.create_mem_desc %arg0 : memref<32768xi8, 3> -> !xegpu.mem_desc<64x128xf32>
+    %1 = xegpu.load_matrix %0[0, 0] <{layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [32, 32], lane_layout = [2, 8], lane_data = [1, 1]>}>: !xegpu.mem_desc<64x128xf32> -> vector<64x128xf32>
+    gpu.return
+  }
+
+  //CHECK-LABEL: distribute_store_matrix
+  //CHECK-SAME: [[arg0:%.+]]: memref<32768xi8, 3>
+  gpu.func @distribute_store_matrix(%arg0 : memref<32768xi8, 3>) {
+    //CHECK: [[cst:%.+]] = arith.constant dense<1.000000e+00> : vector<32x32xf32>
+    //CHECK: [[mdesc:%.+]] = xegpu.create_mem_desc [[arg0]] : memref<32768xi8, 3> -> !xegpu.mem_desc<64x128xf32>
+    //CHECK: [[sgid:%.+]] = gpu.subgroup_id : index
+    //CHECK: [[c2:%.+]] = arith.constant 2 : index
+    //CHECK: [[c4:%.+]] = arith.constant 4 : index
+    //CHECK: [[c4_0:%.+]] = arith.constant 4 : index
+    //CHECK: [[id_y:%.+]] = affine.apply #map()[[[sgid]]]
+    //CHECK: [[id_x:%.+]] = affine.apply #map1()[[[sgid]]]
+    //CHECK: [[c32:%.+]] = arith.constant 32 : index
+    //CHECK: [[l_off_y_0:%.+]] = index.mul [[id_y]], [[c32]]
+    //CHECK: [[c32_1:%.+]] = arith.constant 32 : index
+    //CHECK: [[l_off_x_0:%.+]] = index.mul [[id_x]], [[c32_1]]
+    //CHECK: [[c0:%.+]] = arith.constant 0 : index
+    //CHECK: [[c0_2:%.+]] = arith.constant 0 : index
+    //CHECK: [[l_off_y:%.+]] = arith.addi [[l_off_y_0]], [[c0]] : index
+    //CHECK: [[l_off_x:%.+]] = arith.addi [[l_off_x_0]], [[c0_2]] : index
+    //CHECK: [[c64:%.+]] = arith.constant 64 : index
+    //CHECK: [[off_y:%.+]] = index.remu [[l_off_y]], [[c64]]
+    //CHECK: [[c128:%.+]] = arith.constant 128 : index
+    //CHECK: [[off_x:%.+]] = index.remu [[l_off_x]], [[c128]]
+    //CHECK: xegpu.store_matrix [[cst]], [[mdesc]][[[off_y]], [[off_x]]] : vector<32x32xf32>, !xegpu.mem_desc<64x128xf32>, index, index
+    %cst = arith.constant {layout_result_0 = #xegpu.layout<sg_layout = [2, 4], sg_data = [32, 32]>} dense<1.0> : vector<64x128xf32>
+    %mdesc = xegpu.create_mem_desc %arg0 : memref<32768xi8, 3> -> !xegpu.mem_desc<64x128xf32>
+    xegpu.store_matrix %cst, %mdesc[0, 0] {layout = #xegpu.layout<sg_layout = [2, 4], sg_data = [32, 32]>} : vector<64x128xf32>, !xegpu.mem_desc<64x128xf32>
+    gpu.return
+  }
 }

diff  --git a/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp b/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
index 58962714b7864..200323c7a4e51 100644
--- a/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
+++ b/mlir/test/lib/Dialect/XeGPU/TestXeGPUTransforms.cpp
@@ -82,7 +82,7 @@ struct TestXeGPUUnrollingPatterns
 
             if (auto layout = tdescTy.getLayoutAttr()) {
               auto inst_data = layout.getInstData();
-              if (inst_data && layout.isSgLayout())
+              if (inst_data && layout.isForSubgroup())
                 return SmallVector<int64_t>(inst_data.asArrayRef().begin(),
                                             inst_data.asArrayRef().end());
             }
@@ -156,8 +156,8 @@ struct TestXeGPUUnrollingPatterns
 #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
 
 // Test pattern for distributing vector::StepOp from workgroup to subgroup.
-// Validates LayoutTrait interfaces for offset computation abstraction between
-// LayoutAttr and SliceAttr.
+// Validates DistributeLayoutAttr interfaces for offset computation
+// abstraction between LayoutAttr and SliceAttr.
 class TestStepOpPattern : public OpConversionPattern<vector::StepOp> {
   using OpConversionPattern<vector::StepOp>::OpConversionPattern;
 
@@ -239,7 +239,7 @@ struct TestXeGPULayoutInterface
 
     ConversionTarget target(*ctx);
     auto isLegal = [&](xegpu::SliceAttr layout) -> bool {
-      return !layout || !layout.isWgLayout();
+      return !layout || !layout.isForWorkgroup();
     };
 
     target.addDynamicallyLegalOp<vector::StepOp>(


        


More information about the Mlir-commits mailing list