[Mlir-commits] [mlir] [MLIR][XeGPU] Add lowering from transfer_read/transfer_write to load_gather/store_scatter (PR #152429)

Chao Chen llvmlistbot at llvm.org
Wed Aug 13 15:29:58 PDT 2025


================
@@ -155,6 +153,284 @@ createNdDescriptor(PatternRewriter &rewriter, Location loc,
   return ndDesc;
 }
 
+// Adjusts the strides of a memref according to a given permutation map for
+// vector operations.
+//
+// This function updates the last `vecRank` elements of the `strides` array to
+// reflect the permutation specified by `permMap`. The permutation is applied
+// to the innermost dimensions of the memref, corresponding to the vector
+// shape. This is typically used when lowering vector transfer operations with
+// permutation maps to memory accesses, ensuring that the memory strides match
+// the logical permutation of vector dimensions.
+//
+// Example:
+//   Suppose we have a memref of rank 4 with strides `[s0, s1, s2, s3]` and a
+//   vector of rank 2. If the permutation map swaps the last two dimensions
+//   (e.g., [0, 1] -> [1, 0]), then after calling this function, the last two
+//   strides will be swapped:
+//     Original strides: [s0, s1, s2, s3]
+//     After permutation: [s0, s1, s3, s2]
+//
+static void adjustStridesForPermutation(Operation *op,
+                                        PatternRewriter &rewriter,
+                                        MemRefType memrefType,
+                                        AffineMap permMap, VectorType vecType,
+                                        SmallVectorImpl<Value> &strides) {
+
+  AffineMap invMap = inverseAndBroadcastProjectedPermutation(permMap);
+  SmallVector<unsigned> perms;
+  invMap.isPermutationOfMinorIdentityWithBroadcasting(perms);
+  SmallVector<int64_t> perms64(perms.begin(), perms.end());
+  strides = applyPermutation(strides, perms64);
+}
+
+// Computes memory strides for vector transfer operations, handling both
+// static and dynamic memrefs while applying permutation transformations
+// for XeGPU lowering.
+SmallVector<Value> computeStrides(VectorTransferOpInterface xferOp,
+                                  PatternRewriter &rewriter) {
+  SmallVector<Value> strides;
+  Value baseMemref = xferOp.getBase();
+  AffineMap permMap = xferOp.getPermutationMap();
+  VectorType vectorType = xferOp.getVectorType();
+  MemRefType memrefType = dyn_cast<MemRefType>(baseMemref.getType());
+
+  Location loc = xferOp.getLoc();
+  if (memrefType.hasStaticShape()) {
+    int64_t offset;
+    SmallVector<int64_t> intStrides;
+    if (failed(memrefType.getStridesAndOffset(intStrides, offset)))
+      return {};
+    // Wrap static strides as MLIR values
+    for (int64_t s : intStrides)
+      strides.push_back(arith::ConstantIndexOp::create(rewriter, loc, s));
+  } else {
+    // For dynamic shape memref, use memref.extract_strided_metadata to get
+    // stride values
+    unsigned rank = memrefType.getRank();
+    Type indexType = rewriter.getIndexType();
+
+    // Result types: [base_memref, offset, stride0, stride1, ..., strideN-1,
+    // size0, size1, ..., sizeN-1]
+    SmallVector<Type> resultTypes;
+    resultTypes.push_back(MemRefType::get(
+        {}, memrefType.getElementType())); // base memref (unranked)
+    resultTypes.push_back(indexType);      // offset
+
+    for (unsigned i = 0; i < rank; ++i)
+      resultTypes.push_back(indexType); // strides
+
+    for (unsigned i = 0; i < rank; ++i)
+      resultTypes.push_back(indexType); // sizes
+
+    auto meta = memref::ExtractStridedMetadataOp::create(
+        rewriter, loc, resultTypes, baseMemref);
+    strides.append(meta.getStrides().begin(), meta.getStrides().end());
+  }
+  // Adjust strides according to the permutation map (e.g., for transpose)
+  adjustStridesForPermutation(xferOp, rewriter, memrefType, permMap, vectorType,
+                              strides);
+  return strides;
+}
+
+// This function compute the vectors of localOffsets for scattered load/stores.
+// It is used in the lowering of vector.transfer_read/write to
+// load_gather/store_scatter Example:
+//   %0 = vector.transfer_read %expand_shape[%block_id_y, %c0, %c0, %c0, %c0],
+//               %cst {in_bounds = [true, true, true, true]}>} :
+//               memref<8x4x2x6x32xbf16>, vector<4x2x6x32xbf16>
+//
+//   %6 = vector.step: vector<4xindex>
+//   %7 = vector.step: vector<2xindex>
+//   %8 = vector.step: vector<6xindex>
+//   %9 = vector.step: vector<32xindex>
+//   %10 = arith.mul %6, 384
+//   %11 = arith.mul %7, 192
+//   %12 = arith.mul %8, 32
+//   %13 = arith.mul %9, 1
+//   %14 = vector.shape_cast %10: vector<4xindex> -> vector<4x1x1x1xbf16>
+//   %15 = vector.shape_cast %11: vector<2xindex> -> vector<1x2x1x1xbf16>
+//   %16 = vector.shape_cast %12: vector<6xindex> -> vector<1x1x6x1xbf16>
+//   %17 = vector.shape_cast %13: vector<32xindex> -> vector<1x1x1x32xbf16>
+//   %18 = vector.broadcast %14: vector<4x1x1x1xbf16> -> vector<4x2x6x32xindex>
+//   %19 = vector.broadcast %15: vector<1x2x1x1xbf16> -> vector<4x2x6x32xindex>
+//   %20 = vector.broadcast %16: vector<1x1x6x1xbf16> -> vector<4x2x6x32xindex>
+//   %21 = vector.broadcast %17: vector<1x1x1x32xbf16> -> vector<4x2x6x32xindex>
+//   %22 = arith.add %18, %19
+//   %23 = arith.add %20, %21
+//   %local_offsets = arith.add %22, %23
+//   %orig_offset = %block_id_y * 4x2x6x32 // consider using affine map
+//   %offsets =  orig_offset + local_offsets
+static Value computeOffsets(VectorTransferOpInterface xferOp,
+                            PatternRewriter &rewriter,
+                            ArrayRef<Value> strides) {
+  Location loc = xferOp.getLoc();
+  VectorType vectorType = xferOp.getVectorType();
+  SmallVector<Value> indices(xferOp.getIndices().begin(),
+                             xferOp.getIndices().end());
+  ArrayRef<int64_t> vectorShape = vectorType.getShape();
+
+  // Create vector.step operations for each dimension
+  SmallVector<Value> stepVectors;
+  llvm::map_to_vector(vectorShape, [&](int64_t dim) {
+    auto stepType = VectorType::get({dim}, rewriter.getIndexType());
+    auto stepOp = vector::StepOp::create(rewriter, loc, stepType);
+    stepVectors.push_back(stepOp);
+    return stepOp;
+  });
+
+  // Multiply step vectors by corresponding strides
+  size_t memrefRank = strides.size();
+  size_t vectorRank = vectorShape.size();
+  SmallVector<Value> strideMultiplied;
+  for (size_t i = 0; i < vectorRank; ++i) {
+    size_t memrefDim = memrefRank - vectorRank + i;
+    Value strideValue = strides[memrefDim];
+    auto mulType = dyn_cast<VectorType>(stepVectors[i].getType());
+    auto bcastOp =
+        vector::BroadcastOp::create(rewriter, loc, mulType, strideValue);
+    auto mulOp = arith::MulIOp::create(rewriter, loc, stepVectors[i], bcastOp);
+    strideMultiplied.push_back(mulOp);
+  }
+
+  // Shape cast each multiplied vector to add singleton dimensions
+  SmallVector<Value> shapeCasted;
+  for (size_t i = 0; i < vectorRank; ++i) {
+    SmallVector<int64_t> newShape(vectorRank, 1);
+    newShape[i] = vectorShape[i];
+    auto newType = VectorType::get(newShape, rewriter.getIndexType());
+    auto castOp = vector::ShapeCastOp::create(rewriter, loc, newType,
+                                              strideMultiplied[i]);
+    shapeCasted.push_back(castOp);
+  }
+
+  // Broadcast each shape-casted vector to full vector shape
+  SmallVector<Value> broadcasted;
+  auto fullIndexVectorType =
+      VectorType::get(vectorShape, rewriter.getIndexType());
+  for (Value shapeCastVal : shapeCasted) {
+    auto broadcastOp = vector::BroadcastOp::create(
+        rewriter, loc, fullIndexVectorType, shapeCastVal);
+    broadcasted.push_back(broadcastOp);
+  }
+
+  // Add all broadcasted vectors together to compute local offsets
+  Value localOffsets = broadcasted[0];
+  for (size_t i = 1; i < broadcasted.size(); ++i) {
+    localOffsets =
+        arith::AddIOp::create(rewriter, loc, localOffsets, broadcasted[i]);
----------------
chencha3 wrote:

nit: braces are not necessary. 

https://github.com/llvm/llvm-project/pull/152429


More information about the Mlir-commits mailing list