[Mlir-commits] [mlir] [mlir][tosa] Enhance verify checks for PAD Op (PR #137177)
Peng Sun
llvmlistbot at llvm.org
Thu Apr 24 11:05:30 PDT 2025
================
@@ -1534,15 +1534,49 @@ LogicalResult tosa::PadOp::verify() {
if (!inputType || !outputType)
return success();
- auto paddingRank = cast<tosa::shapeType>(getPadding().getType()).getRank();
+ auto inputRank = inputType.getRank();
+ auto outputRank = outputType.getRank();
+ if (inputRank != outputRank)
+ return emitOpError() << "expect same input and output tensor rank, but got "
+ << "inputRank: " << inputRank
+ << ", outputRank: " << outputRank;
+
+ DenseIntElementsAttr paddingAttr;
+ if (!matchPattern(getPadding(), m_Constant(&paddingAttr)))
+ return failure();
+
+ auto paddingValues = paddingAttr.getValues<APInt>();
+ if (paddingValues.size() != static_cast<size_t>(inputRank * 2))
+ return emitOpError() << "padding tensor must have " << inputRank
+ << " * 2 = " << inputRank * 2 << " elements, but got "
+ << paddingValues.size();
+
+ auto inputShape = inputType.getShape();
+ auto outputShape = outputType.getShape();
+
+ for (int64_t i = 0; i < inputRank; ++i) {
+ // Skip shape verification for dynamic dims
+ if (inputShape[i] == ShapedType::kDynamic ||
+ outputShape[i] == ShapedType::kDynamic)
+ continue;
+
+ int64_t padStart = paddingValues[i * 2].getSExtValue();
+ int64_t padEnd = paddingValues[i * 2 + 1].getSExtValue();
- if (inputType.getRank() != outputType.getRank())
- return emitOpError() << "expect same input and output tensor rank.";
+ if (padStart < 0 || padEnd < 0) {
+ return emitOpError() << "padding values must be non-negative, got ["
----------------
psunn wrote:
Thanks Luke.
Update to check both cases sequentially.
There are existing test cases for dynamic padding (e.g., `pad_dyn_padding` in _tosa-to-tensor.mlir_):
```
%0 = tosa.const_shape {values = dense<[-1, 2, 3, 4]> : tensor<4xindex>} : () -> !tosa.shape<4>
%pad_const = "tosa.const"() {values = dense<3.14> : tensor<1xf32>} : () -> tensor<1xf32>
%1 = "tosa.pad"(%arg0, %0, %pad_const) : (tensor<1x2xf32>, !tosa.shape<4>, tensor<1xf32>) -> (tensor<?x9xf32>)
```
While the TOSA specification does not permit negative padding values, the pad verifier currently allows `-1` as a placeholder for dynamic padding. We could consider strengthening this within validation pass in the TOSA dialect, if needed.
https://github.com/llvm/llvm-project/pull/137177
More information about the Mlir-commits
mailing list