[Mlir-commits] [mlir] [mlir][AMDGPU] Implement gpu.subgroup_reduce with DPP intrinsics on AMD GPUs (PR #133204)

Jakub Kuderski llvmlistbot at llvm.org
Wed Apr 23 08:01:35 PDT 2025


================
@@ -362,6 +366,163 @@ struct VectorSubgroupReduceToShuffles final
   unsigned shuffleBitwidth = 0;
   bool matchClustered = false;
 };
+
+FailureOr<Value>
+createSubgroupDPPReduction(PatternRewriter &rewriter, gpu::SubgroupReduceOp op,
+                           Value input, gpu::AllReduceOperation mode,
+                           const ClusterInfo &ci, amdgpu::Chipset chipset) {
+  Location loc = op.getLoc();
+  Value dpp;
+  Value res = input;
+  constexpr int allRows = 0xf;
+  constexpr int allBanks = 0xf;
+  const bool boundCtrl = true;
+  if (ci.clusterSize >= 2) {
+    // Perform reduction between all lanes N <-> N+1.
+    dpp = rewriter.create<amdgpu::DPPOp>(
+        loc, res.getType(), res, res, amdgpu::DPPPerm::quad_perm,
+        rewriter.getI32ArrayAttr({1, 0, 3, 2}), allRows, allBanks, boundCtrl);
+    res = vector::makeArithReduction(rewriter, loc,
+                                     gpu::convertReductionKind(mode), res, dpp);
+  }
+
+  if (ci.clusterSize >= 4) {
+    // Perform reduction between all lanes N <-> N+2.
+    dpp = rewriter.create<amdgpu::DPPOp>(
+        loc, res.getType(), res, res, amdgpu::DPPPerm::quad_perm,
+        rewriter.getI32ArrayAttr({2, 3, 0, 1}), allRows, allBanks, boundCtrl);
+    res = vector::makeArithReduction(rewriter, loc,
+                                     gpu::convertReductionKind(mode), res, dpp);
+  }
+  if (ci.clusterSize >= 8) {
+    // Perform reduction between all lanes N <-> 7-N,
+    // e.g lane[0] <-> lane[7], lane[1] <-> lane[6]..., lane[3] <-> lane[4].
+    dpp = rewriter.create<amdgpu::DPPOp>(
+        loc, res.getType(), res, res, amdgpu::DPPPerm::row_half_mirror,
+        rewriter.getUnitAttr(), allRows, allBanks, boundCtrl);
+    res = vector::makeArithReduction(rewriter, loc,
+                                     gpu::convertReductionKind(mode), res, dpp);
+  }
+  if (ci.clusterSize >= 16) {
+    // Perform reduction between all lanes N <-> 15-N,
+    // e.g lane[0] <-> lane[15], lane[1] <-> lane[14]..., lane[7] <-> lane[8].
+    dpp = rewriter.create<amdgpu::DPPOp>(
+        loc, res.getType(), res, res, amdgpu::DPPPerm::row_mirror,
+        rewriter.getUnitAttr(), allRows, allBanks, boundCtrl);
+    res = vector::makeArithReduction(rewriter, loc,
+                                     gpu::convertReductionKind(mode), res, dpp);
+  }
+  if (ci.clusterSize >= 32) {
+    if (chipset.majorVersion <= 9) {
+      // Broadcast last value from each row to next row.
+      // Use row mask to avoid polluting rows 1 and 3.
+      dpp = rewriter.create<amdgpu::DPPOp>(
+          loc, res.getType(), res, res, amdgpu::DPPPerm::row_bcast_15,
+          rewriter.getUnitAttr(), 0xa, allBanks,
+          /*bound_ctrl*/ false);
+      res = vector::makeArithReduction(
+          rewriter, loc, gpu::convertReductionKind(mode), res, dpp);
+    } else if (chipset.majorVersion <= 12) {
+      // Use a permute lane to cross rows (row 1 <-> row 0, row 3 <-> row 2).
+      Value uint32Max = rewriter.create<arith::ConstantOp>(
+          loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(-1));
+      dpp = rewriter.create<ROCDL::PermlaneX16Op>(loc, res.getType(), res, res,
+                                                  uint32Max, uint32Max,
+                                                  /*fi=*/true,
+                                                  /*bound_ctrl=*/false);
+      res = vector::makeArithReduction(
+          rewriter, loc, gpu::convertReductionKind(mode), res, dpp);
+      if (ci.subgroupSize == 32) {
+        Value lane0 = rewriter.create<arith::ConstantOp>(
+            loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(0));
+        res =
+            rewriter.create<ROCDL::ReadlaneOp>(loc, res.getType(), res, lane0);
+      }
+    } else {
+      return rewriter.notifyMatchFailure(
+          op, "Subgroup reduce lowering to DPP not currently supported for "
+              "this device.");
+    }
+  }
+  if (ci.clusterSize >= 64) {
+    if (chipset.majorVersion <= 9) {
+      // Broadcast 31st lane value to rows 2 and 3.
+      // Use row mask to avoid polluting rows 0 and 1.
+      dpp = rewriter.create<amdgpu::DPPOp>(
+          loc, res.getType(), res, res, amdgpu::DPPPerm::row_bcast_31,
+          rewriter.getUnitAttr(), 0xc, allBanks,
+          /*bound_ctrl*/ false);
+
+    } else if (chipset.majorVersion <= 12) {
+      // Assume reduction across 32 lanes has been done.
+      // Perform final reduction manually by summing values in lane 0 and
+      // lane 32.
+      Value lane0 = rewriter.create<arith::ConstantOp>(
+          loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(0));
+      Value lane32 = rewriter.create<arith::ConstantOp>(
+          loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(32));
+      dpp = rewriter.create<ROCDL::ReadlaneOp>(loc, res.getType(), res, lane32);
+      res = rewriter.create<ROCDL::ReadlaneOp>(loc, res.getType(), res, lane0);
+    } else {
+      return rewriter.notifyMatchFailure(
+          op, "Subgroup reduce lowering to DPP not currently supported for "
+              "this device.");
+    }
+    res = vector::makeArithReduction(rewriter, loc,
+                                     gpu::convertReductionKind(mode), res, dpp);
+  }
+  assert(res.getType() == input.getType());
+  return res;
+}
+
+/// Collect a set of patterns to lower `gpu.subgroup_reduce` into `amdgpu.dpp`
+/// ops over scalar types. Assumes that the subgroup has
+/// `subgroupSize` lanes. Applicable only to AMD GPUs.
+struct ScalarSubgroupReduceToDPP final
+    : OpRewritePattern<gpu::SubgroupReduceOp> {
+  ScalarSubgroupReduceToDPP(MLIRContext *ctx, unsigned subgroupSize,
+                            bool matchClustered, amdgpu::Chipset chipset,
+                            PatternBenefit benefit)
+      : OpRewritePattern(ctx, benefit), subgroupSize(subgroupSize),
+        matchClustered(matchClustered), chipset(chipset) {}
+
+  LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
+                                PatternRewriter &rewriter) const override {
+    if (op.getClusterSize().has_value() != matchClustered) {
+      return rewriter.notifyMatchFailure(
+          op, llvm::formatv("op is {0}clustered but pattern is configured to "
+                            "only match {1}clustered ops",
+                            matchClustered ? "non-" : "",
+                            matchClustered ? "" : "non-"));
+    }
+    auto ci = getAndValidateClusterInfo(op, subgroupSize);
+    if (failed(ci))
+      return failure();
+
+    if (ci->clusterStride != 1)
+      return rewriter.notifyMatchFailure(
+          op, "Supgroup reductions using DPP are currently only available for "
+              "clusters of contiguous lanes.");
+
+    Type valueTy = op.getType();
+    if (!valueTy.isIntOrFloat())
+      return rewriter.notifyMatchFailure(
+          op, "value type is not a compatible scalar");
----------------
kuhar wrote:

nit: Use consistent capitalization across these messages

https://github.com/llvm/llvm-project/pull/133204


More information about the Mlir-commits mailing list