[Mlir-commits] [mlir] [mlir][vector] Canonicalize/fold 'order preserving' transposes (PR #135841)

James Newling llvmlistbot at llvm.org
Mon Apr 21 10:29:51 PDT 2025


https://github.com/newling updated https://github.com/llvm/llvm-project/pull/135841

>From f4ae20602111d93f734bfbcf99f9e76a56bb7a79 Mon Sep 17 00:00:00 2001
From: James Newling <james.newling at gmail.com>
Date: Mon, 21 Apr 2025 10:29:15 -0700
Subject: [PATCH] add transpose(shape_cast) and shape_cast(transpose) folders,
 with tests

---
 mlir/lib/Dialect/Vector/IR/VectorOps.cpp      | 90 ++++++++++++++++---
 mlir/test/Dialect/Vector/canonicalize.mlir    |  2 +-
 .../Vector/canonicalize/vector-transpose.mlir | 64 +++++++++++++
 3 files changed, 145 insertions(+), 11 deletions(-)

diff --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
index 368259b38b153..2e5fc70afa4f7 100644
--- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
+++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
@@ -5594,6 +5594,29 @@ LogicalResult ShapeCastOp::verify() {
   return success();
 }
 
+namespace {
+
+/// Return true if `transpose` does not permute a pair of dimensions that are
+/// both not of size 1. By `order preserving` we mean that the flattened
+/// versions of the input and output vectors are (numerically) identical.
+/// In other words `transpose` is effectively a shape cast.
+bool isOrderPreserving(TransposeOp transpose) {
+  ArrayRef<int64_t> permutation = transpose.getPermutation();
+  ArrayRef<int64_t> inShape = transpose.getSourceVectorType().getShape();
+  int64_t current = 0;
+  for (auto p : permutation) {
+    if (inShape[p] != 1) {
+      if (p < current) {
+        return false;
+      }
+      current = p;
+    }
+  }
+  return true;
+}
+
+} // namespace
+
 OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {
 
   // No-op shape cast.
@@ -5602,13 +5625,15 @@ OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {
 
   VectorType resultType = getType();
 
-  // Canceling shape casts.
-  if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
-
-    // Only allows valid transitive folding (expand/collapse dimensions).
-    VectorType srcType = otherOp.getSource().getType();
+  // shape_cast(something(x)) -> x, or
+  //                          -> shape_cast(x).
+  //
+  // Confirms that a new shape_cast will have valid semantics (expands OR
+  // collapses dimensions).
+  auto maybeFold = [&](TypedValue<VectorType> source) -> OpFoldResult {
+    VectorType srcType = source.getType();
     if (resultType == srcType)
-      return otherOp.getSource();
+      return source;
     if (srcType.getRank() < resultType.getRank()) {
       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
         return {};
@@ -5618,8 +5643,25 @@ OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {
     } else {
       return {};
     }
-    setOperand(otherOp.getSource());
+    setOperand(source);
     return getResult();
+  };
+
+  // Canceling shape casts.
+  if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
+    TypedValue<VectorType> source = otherOp.getSource();
+    return maybeFold(source);
+  }
+
+  // shape_cast(transpose(x)) -> shape_cast(x)
+  if (auto transpose = getSource().getDefiningOp<TransposeOp>()) {
+    if (transpose.getType().isScalable())
+      return {};
+    if (isOrderPreserving(transpose)) {
+      TypedValue<VectorType> source = transpose.getVector();
+      return maybeFold(source);
+    }
+    return {};
   }
 
   // Cancelling broadcast and shape cast ops.
@@ -5646,7 +5688,7 @@ namespace {
 /// Helper function that computes a new vector type based on the input vector
 /// type by removing the trailing one dims:
 ///
-///   vector<4x1x1xi1> --> vector<4x1>
+///   vector<4x1x1xi1> --> vector<4x1xi1>
 ///
 static VectorType trimTrailingOneDims(VectorType oldType) {
   ArrayRef<int64_t> oldShape = oldType.getShape();
@@ -6113,6 +6155,34 @@ class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> {
   }
 };
 
+/// Folds transpose(shape_cast) into a new shape_cast.
+class FoldTransposeShapeCast final : public OpRewritePattern<TransposeOp> {
+public:
+  using OpRewritePattern::OpRewritePattern;
+
+  LogicalResult matchAndRewrite(TransposeOp transposeOp,
+                                PatternRewriter &rewriter) const override {
+    auto shapeCastOp =
+        transposeOp.getVector().getDefiningOp<vector::ShapeCastOp>();
+    if (!shapeCastOp)
+      return failure();
+    if (!isOrderPreserving(transposeOp))
+      return failure();
+    if (transposeOp.getType().isScalable())
+      return failure();
+
+    VectorType resultType = transposeOp.getType();
+
+    // We don't need to check isValidShapeCast at this point, because it is
+    // guaranteed that merging the transpose into the the shape_cast is a valid
+    // shape_cast, because the transpose just inserts/removes ones.
+
+    rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(transposeOp, resultType,
+                                                     shapeCastOp.getSource());
+    return success();
+  }
+};
+
 /// Folds transpose(broadcast(x)) to broadcast(x) if the transpose is
 /// 'order preserving', where 'order preserving' means the flattened
 /// inputs and outputs of the transpose have identical (numerical) values.
@@ -6211,8 +6281,8 @@ class FoldTransposeBroadcast : public OpRewritePattern<vector::TransposeOp> {
 
 void vector::TransposeOp::getCanonicalizationPatterns(
     RewritePatternSet &results, MLIRContext *context) {
-  results.add<FoldTransposeCreateMask, TransposeFolder, FoldTransposeSplat,
-              FoldTransposeBroadcast>(context);
+  results.add<FoldTransposeCreateMask, FoldTransposeShapeCast, TransposeFolder,
+              FoldTransposeSplat, FoldTransposeBroadcast>(context);
 }
 
 //===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/Vector/canonicalize.mlir b/mlir/test/Dialect/Vector/canonicalize.mlir
index 2d365ac2b4287..943a9429574cd 100644
--- a/mlir/test/Dialect/Vector/canonicalize.mlir
+++ b/mlir/test/Dialect/Vector/canonicalize.mlir
@@ -8,6 +8,7 @@ func.func @create_vector_mask_to_constant_mask() -> (vector<4x3xi1>) {
   %0 = vector.create_mask %c3, %c2 : vector<4x3xi1>
   return %0 : vector<4x3xi1>
 }
+
 // -----
 
 // CHECK-LABEL: create_scalable_vector_mask_to_constant_mask
@@ -3035,7 +3036,6 @@ func.func @insert_vector_poison(%a: vector<4x8xf32>)
   return %1 : vector<4x8xf32>
 }
 
-
 // -----
 
 // CHECK-LABEL: @insert_scalar_poison_idx
diff --git a/mlir/test/Dialect/Vector/canonicalize/vector-transpose.mlir b/mlir/test/Dialect/Vector/canonicalize/vector-transpose.mlir
index e97e147459de2..322309a559aa0 100644
--- a/mlir/test/Dialect/Vector/canonicalize/vector-transpose.mlir
+++ b/mlir/test/Dialect/Vector/canonicalize/vector-transpose.mlir
@@ -137,3 +137,67 @@ func.func @negative_broadcast_transpose_021(%arg0 : vector<3x1x3xi8>) -> vector<
   return %1 : vector<3x3x3xi8>
 }
 
+
+// -----
+
+// In this test, the permutation maps the non-one dimensions (1 and 2) as follows:
+// 1 -> 0
+// 2 -> 4
+// Because 0 < 4, this permutation is order preserving and effectively a shape_cast.
+// CHECK-LABEL: @transpose_shape_cast
+//  CHECK-SAME:   %[[ARG:.*]]: vector<1x4x4x1x1xi8>) -> vector<4x4xi8> {
+//       CHECK:   %[[SHAPE_CAST:.*]] = vector.shape_cast %[[ARG]] :
+//  CHECK-SAME:   vector<1x4x4x1x1xi8> to vector<4x4xi8>
+//       CHECK:   return %[[SHAPE_CAST]] : vector<4x4xi8>
+func.func @transpose_shape_cast(%arg : vector<1x4x4x1x1xi8>) -> vector<4x4xi8> {
+  %0 = vector.transpose %arg, [1, 0, 3, 4, 2]
+     : vector<1x4x4x1x1xi8> to vector<4x1x1x1x4xi8>
+  %1 = vector.shape_cast %0 : vector<4x1x1x1x4xi8> to vector<4x4xi8>
+  return %1 : vector<4x4xi8>
+}
+
+// -----
+
+// In this test, the mapping of non-one indices (1 and 2) is as follows:
+// 1 -> 2
+// 2 -> 1
+// As this is not increasing (2 > 1), this transpose is not order
+// preserving and cannot be treated as a shape_cast.
+// CHECK-LABEL: @negative_transpose_shape_cast
+//  CHECK-SAME:   %[[ARG:.*]]: vector<1x4x4x1xi8>) -> vector<4x4xi8> {
+//       CHECK:   %[[TRANSPOSE:.*]] = vector.transpose %[[ARG]]
+//       CHECK:   %[[SHAPE_CAST:.*]] = vector.shape_cast %[[TRANSPOSE]]
+//       CHECK:   return %[[SHAPE_CAST]] : vector<4x4xi8>
+func.func @negative_transpose_shape_cast(%arg : vector<1x4x4x1xi8>) -> vector<4x4xi8> {
+  %0 = vector.transpose %arg, [0, 2, 1, 3]
+     : vector<1x4x4x1xi8> to vector<1x4x4x1xi8>
+  %1 = vector.shape_cast %0 : vector<1x4x4x1xi8> to vector<4x4xi8>
+  return %1 : vector<4x4xi8>
+}
+
+// -----
+
+// CHECK-LABEL: @shape_cast_transpose
+//  CHECK-SAME:   %[[ARG:.*]]: vector<2x3x1x1xi8>) -> vector<6x1x1xi8> {
+//       CHECK:   %[[SHAPE_CAST:.*]] = vector.shape_cast %[[ARG]] :
+//  CHECK-SAME:   vector<2x3x1x1xi8> to vector<6x1x1xi8>
+//       CHECK:   return %[[SHAPE_CAST]] : vector<6x1x1xi8>
+func.func @shape_cast_transpose(%arg : vector<2x3x1x1xi8>) ->  vector<6x1x1xi8> {
+  %0 = vector.shape_cast %arg : vector<2x3x1x1xi8> to vector<6x1x1xi8>
+  %1 = vector.transpose %0, [0, 2, 1]
+     : vector<6x1x1xi8> to vector<6x1x1xi8>
+  return %1 : vector<6x1x1xi8>
+}
+
+// -----
+
+// CHECK-LABEL: @negative_shape_cast_transpose
+//  CHECK-SAME:   %[[ARG:.*]]: vector<6xi8>) -> vector<2x3xi8> {
+//       CHECK:   %[[SHAPE_CAST:.*]] = vector.shape_cast %[[ARG]] :
+//       CHECK:   %[[TRANSPOSE:.*]] = vector.transpose %[[SHAPE_CAST]]
+//       CHECK:   return %[[TRANSPOSE]] : vector<2x3xi8>
+func.func @negative_shape_cast_transpose(%arg : vector<6xi8>) -> vector<2x3xi8> {
+  %0 = vector.shape_cast %arg : vector<6xi8> to vector<3x2xi8>
+  %1 = vector.transpose %0, [1, 0] : vector<3x2xi8> to vector<2x3xi8>
+  return %1 : vector<2x3xi8>
+}



More information about the Mlir-commits mailing list