[Mlir-commits] [mlir] [mlir][tosa] Enhance CONV3D & DEPTHWISE_CONV2D verifier (PR #135738)
TatWai Chong
llvmlistbot at llvm.org
Mon Apr 14 20:08:37 PDT 2025
https://github.com/tatwaichong created https://github.com/llvm/llvm-project/pull/135738
Verify the correctness of pad, stride, dilation, and dimension of input/weight/bias/output.
>From cd60e1050731bf014a3520f3508fd460f6e307c9 Mon Sep 17 00:00:00 2001
From: TatWai Chong <tatwai.chong at arm.com>
Date: Mon, 14 Apr 2025 16:38:12 -0700
Subject: [PATCH] [mlir][tosa] Enhance CONV3D & DEPTHWISE_CONV2D verifier
Verify the pad, stride, dilation, and dimension of input/output.
---
mlir/lib/Dialect/Tosa/IR/TosaOps.cpp | 246 +++++++++++-------
.../TosaToLinalg/tosa-to-linalg-named.mlir | 44 ++--
mlir/test/Dialect/Tosa/availability.mlir | 4 +-
mlir/test/Dialect/Tosa/canonicalize.mlir | 12 +-
mlir/test/Dialect/Tosa/error_if_check.mlir | 152 +++++++++++
mlir/test/Dialect/Tosa/invalid_extension.mlir | 8 +-
mlir/test/Dialect/Tosa/level_check.mlir | 120 ++++-----
mlir/test/Dialect/Tosa/ops.mlir | 16 +-
.../Tosa/profile_pro_fp_unsupported.mlir | 4 +-
.../Tosa/profile_pro_int_unsupported.mlir | 4 +-
mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir | 35 ++-
11 files changed, 427 insertions(+), 218 deletions(-)
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 9579d71a2afe9..194c577edd368 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -428,6 +428,152 @@ static LogicalResult verifyConvOpModes(T op) {
return success();
}
+//===----------------------------------------------------------------------===//
+// ERROR_IF functions.
+// ERROR_IF is a predicate that must set an error if the condition holds.
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+static LogicalResult verifyConvOpErrorIf(T op) {
+ llvm::ArrayRef<int64_t> padding = op.getPad();
+ if (llvm::any_of(padding, [](int64_t p) { return p < 0; }))
+ return op.emitOpError("expect all padding values to be >= 0, got ")
+ << padding;
+
+ llvm::ArrayRef<int64_t> strides = op.getStride();
+ if (llvm::any_of(strides, [](int64_t s) { return s < 1; }))
+ return op.emitOpError("expect all stride values to be >= 1, got ")
+ << strides;
+
+ llvm::ArrayRef<int64_t> dilations = op.getDilation();
+ if (llvm::any_of(dilations, [](int64_t d) { return d < 1; }))
+ return op.emitOpError("expect all dilation values to be >= 1, got ")
+ << dilations;
+
+ const RankedTensorType outputType =
+ llvm::dyn_cast<RankedTensorType>(op.getOutput().getType());
+ if (!outputType)
+ // Skip following checks if output is not ranked
+ return success();
+
+ const RankedTensorType inputType =
+ llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
+ const RankedTensorType weightType =
+ llvm::dyn_cast<RankedTensorType>(op.getWeight().getType());
+
+ if (inputType && weightType) {
+ const auto verifyOutputSize =
+ [&op](const int64_t inputSize, const int64_t kernelSize,
+ const int64_t outputSize, const int64_t padBefore,
+ const int64_t padAfter, const int64_t stride,
+ const int64_t dilation, const llvm::StringRef dimName,
+ const llvm::StringRef dimAxis,
+ const llvm::StringRef padBeforeName,
+ const llvm::StringRef padAfterName) -> LogicalResult {
+ if (inputSize == ShapedType::kDynamic ||
+ kernelSize == ShapedType::kDynamic)
+ return success();
+
+ // ERROR_IF: O != idiv_check(I - 1 + pa + pb - (K - 1) * d, s) + 1
+
+ const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck(
+ inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation,
+ stride);
+ if (!calculatedOutSizeMinusOne.has_value())
+ return op.emitOpError("expected input_")
+ << dimName << " - 1 + pad_" << padBeforeName << " + pad_"
+ << padAfterName << " - (kernel_" << dimName
+ << " - 1) * dilation_" << dimAxis
+ << " to be wholly divisible by stride_" << dimAxis << ", got ("
+ << inputSize << " - 1 + " << padBefore << " + " << padAfter
+ << " - (" << kernelSize << " - 1) * " << dilation << ") / "
+ << stride;
+
+ const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1;
+ if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize)
+ return op.emitOpError("calculated output ")
+ << dimName << " did not match expected: "
+ << "calculated=" << calculatedOutSize
+ << ", expected=" << outputSize;
+
+ return success();
+ };
+
+ /// ERROR_IF: O != idiv_check(I - 1 + p_a + p_b - (K - 1) * d, s) + 1
+
+ // input = [_,IH,IW,_], weight = [_,KH,KW,_], output = [_,OH,OW,_]
+ if constexpr (std::is_same<T, tosa::Conv2DOp>::value) {
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(1), weightType.getDimSize(1),
+ outputType.getDimSize(1), padding[0], padding[1], strides[0],
+ dilations[0], "height", "y", "top", "bottom")))
+ return failure();
+
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(2), weightType.getDimSize(2),
+ outputType.getDimSize(2), padding[2], padding[3], strides[1],
+ dilations[1], "width", "x", "left", "right")))
+ return failure();
+ }
+
+ // input = [_,IH,IW,_], weight = [KH,KW,_,_], output = [_,OH,OW,_]
+ if constexpr (std::is_same<T, tosa::DepthwiseConv2DOp>::value) {
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(1), weightType.getDimSize(0),
+ outputType.getDimSize(1), padding[0], padding[1], strides[0],
+ dilations[0], "height", "y", "top", "bottom")))
+ return failure();
+
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(2), weightType.getDimSize(1),
+ outputType.getDimSize(2), padding[2], padding[3], strides[1],
+ dilations[1], "width", "x", "left", "right")))
+ return failure();
+ }
+
+ // input = [_,ID,IH,IW,_], weight = [_,KD,KH,KW,_], output = [_,OD,OH,OW,_]
+ if constexpr (std::is_same<T, tosa::Conv3DOp>::value) {
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(1), weightType.getDimSize(1),
+ outputType.getDimSize(1), padding[0], padding[1], strides[0],
+ dilations[0], "depth", "d", "front", "back")))
+ return failure();
+
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(2), weightType.getDimSize(2),
+ outputType.getDimSize(2), padding[2], padding[3], strides[1],
+ dilations[1], "height", "y", "top", "bottom")))
+ return failure();
+
+ if (failed(verifyOutputSize(
+ inputType.getDimSize(3), weightType.getDimSize(3),
+ outputType.getDimSize(3), padding[4], padding[5], strides[2],
+ dilations[2], "width", "x", "left", "right")))
+ return failure();
+ }
+ }
+
+ const RankedTensorType biasType =
+ llvm::dyn_cast<RankedTensorType>(op.getBias().getType());
+ if (!biasType)
+ // Skip following checks if bias is not ranked
+ return success();
+
+ const int64_t biasChannels = biasType.getDimSize(0);
+ const int64_t outputChannels = outputType.getDimSize(3);
+ if (biasChannels == ShapedType::kDynamic ||
+ outputChannels == ShapedType::kDynamic)
+ // Skip following checks if biasChannels or outputChannels is dynamic dim
+ return success();
+
+ if (biasChannels != outputChannels && biasChannels != 1)
+ return op.emitOpError(
+ "bias channels expected to be equal to output channels (")
+ << outputChannels << ") or 1, got " << biasChannels;
+
+ return success();
+}
+
// verify that inType and outType have same element types
template <typename T>
static LogicalResult verifySameElementTypes(T op, Type inType, Type outType) {
@@ -2570,99 +2716,9 @@ LogicalResult Conv2DOp::inferReturnTypeComponents(
}
LogicalResult Conv2DOp::verify() {
- if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
+ if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() ||
+ verifyConvOpErrorIf(*this).failed())
return failure();
-
- llvm::ArrayRef<int64_t> padding = getPad();
- if (llvm::any_of(padding, [](int64_t p) { return p < 0; }))
- return emitOpError("expect all padding values to be >= 0, got ") << padding;
-
- llvm::ArrayRef<int64_t> strides = getStride();
- if (llvm::any_of(strides, [](int64_t s) { return s < 1; }))
- return emitOpError("expect all stride values to be >= 1, got ") << strides;
-
- llvm::ArrayRef<int64_t> dilations = getDilation();
- if (llvm::any_of(dilations, [](int64_t d) { return d < 1; }))
- return emitOpError("expect all dilation values to be >= 1, got ")
- << dilations;
-
- const RankedTensorType outputType =
- llvm::dyn_cast<RankedTensorType>(getOutput().getType());
- if (!outputType)
- // Skip following checks if output is not ranked
- return success();
-
- const RankedTensorType inputType =
- llvm::dyn_cast<RankedTensorType>(getInput().getType());
- const RankedTensorType weightType =
- llvm::dyn_cast<RankedTensorType>(getWeight().getType());
-
- if (inputType && weightType) {
- const auto verifyOutputSize =
- [this](const int64_t inputSize, const int64_t kernelSize,
- const int64_t outputSize, const int64_t padBefore,
- const int64_t padAfter, const int64_t stride,
- const int64_t dilation, const llvm::StringRef dimName,
- const llvm::StringRef dimAxis,
- const llvm::StringRef padBeforeName,
- const llvm::StringRef padAfterName) -> LogicalResult {
- if (inputSize == ShapedType::kDynamic ||
- kernelSize == ShapedType::kDynamic)
- return success();
-
- const std::optional<int64_t> calculatedOutSizeMinusOne = idivCheck(
- inputSize - 1 + padBefore + padAfter - (kernelSize - 1) * dilation,
- stride);
- if (!calculatedOutSizeMinusOne.has_value())
- return emitOpError("expected input_")
- << dimName << " - 1 + pad_" << padBeforeName << " + pad_"
- << padAfterName << " - (kernel_" << dimName
- << " - 1) * dilation_" << dimAxis
- << " to be wholly divisible by stride_" << dimAxis << ", got ("
- << inputSize << " - 1 + " << padBefore << " + " << padAfter
- << " - (" << kernelSize << " - 1) * " << dilation << ") / "
- << stride;
-
- const int64_t calculatedOutSize = calculatedOutSizeMinusOne.value() + 1;
- if (outputSize != ShapedType::kDynamic && calculatedOutSize != outputSize)
- return emitOpError("calculated output ")
- << dimName << " did not match expected: "
- << "calculated=" << calculatedOutSize
- << ", expected=" << outputSize;
-
- return success();
- };
-
- if (failed(verifyOutputSize(
- inputType.getDimSize(1), weightType.getDimSize(1),
- outputType.getDimSize(1), padding[0], padding[1], strides[0],
- dilations[0], "height", "y", "top", "bottom")))
- return failure();
-
- if (failed(verifyOutputSize(
- inputType.getDimSize(2), weightType.getDimSize(2),
- outputType.getDimSize(2), padding[2], padding[3], strides[1],
- dilations[1], "width", "x", "left", "right")))
- return failure();
- }
-
- const RankedTensorType biasType =
- llvm::dyn_cast<RankedTensorType>(getBias().getType());
- if (!biasType)
- // Skip following checks if bias is not ranked
- return success();
-
- const int64_t biasChannels = biasType.getDimSize(0);
- const int64_t outputChannels = outputType.getDimSize(3);
- if (biasChannels == ShapedType::kDynamic ||
- outputChannels == ShapedType::kDynamic)
- // Skip following checks if biasChannels or outputChannels is dynamic dim
- return success();
-
- if (biasChannels != outputChannels && biasChannels != 1)
- return emitOpError(
- "bias channels expected to be equal to output channels (")
- << outputChannels << ") or 1, got " << biasChannels;
return success();
}
@@ -2737,7 +2793,8 @@ LogicalResult Conv3DOp::inferReturnTypeComponents(
}
LogicalResult Conv3DOp::verify() {
- if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
+ if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() ||
+ verifyConvOpErrorIf(*this).failed())
return failure();
return success();
}
@@ -2847,7 +2904,8 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
}
LogicalResult DepthwiseConv2DOp::verify() {
- if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed())
+ if (verifyConvOp(*this).failed() || verifyConvOpModes(*this).failed() ||
+ verifyConvOpErrorIf(*this).failed())
return failure();
return success();
}
diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
index 242772fe5cdcf..a737a8a05bae6 100644
--- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
+++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
@@ -878,22 +878,22 @@ func.func @depthwise_conv2d_f16_f32_acc(%arg0 : tensor<1x7x5x3xf16>, %arg1 : ten
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: @conv3d_f32
-func.func @conv3d_f32(%input: tensor<1x49x48x47x27xf32>, %weights: tensor<28x3x4x5x27xf32>, %bias: tensor<28xf32>) -> () {
- // CHECK-DAG: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<28x3x4x5x27xf32>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x4x5x27x28xf32>) permutation = [1, 2, 3, 4, 0]
- // CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x28xf32>
+func.func @conv3d_f32(%input: tensor<1x49x48x47x27xf32>, %weights: tensor<43x3x4x5x27xf32>, %bias: tensor<43xf32>) -> () {
+ // CHECK-DAG: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<43x3x4x5x27xf32>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x4x5x27x43xf32>) permutation = [1, 2, 3, 4, 0]
+ // CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x43xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
- // CHECK-SAME: ins(%arg2 : tensor<28xf32>) outs(%[[INIT]] : tensor<1x47x45x43x28xf32>) {
+ // CHECK-SAME: ins(%arg2 : tensor<43xf32>) outs(%[[INIT]] : tensor<1x47x45x43x43xf32>) {
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
// CHECK: linalg.yield %[[IN]] : f32
- // CHECK: } -> tensor<1x47x45x43x28xf32>
+ // CHECK: } -> tensor<1x47x45x43x43xf32>
// CHECK: linalg.conv_3d_ndhwc_dhwcf
// CHECK-SAME: {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>}
- // CHECK-SAME: ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x48x47x27xf32>, tensor<3x4x5x27x28xf32>)
- // CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x28xf32>) -> tensor<1x47x45x43x28xf32>
+ // CHECK-SAME: ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x48x47x27xf32>, tensor<3x4x5x27x43xf32>)
+ // CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x43xf32>) -> tensor<1x47x45x43x43xf32>
%input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xf32>, tensor<28x3x4x5x27xf32>, tensor<28xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x47x45x43x28xf32>
+ %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xf32>, tensor<43x3x4x5x27xf32>, tensor<43xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x47x45x43x43xf32>
return
}
@@ -919,40 +919,40 @@ func.func @conv3d_scalar_bias_f32(%input: tensor<1x49x48x47x27xf32>, %weights: t
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: @conv3d_i8
-func.func @conv3d_i8(%input: tensor<1x49x48x47x27xi8>, %weights: tensor<28x3x4x5x27xi8>, %bias: tensor<28xi32>) -> () {
- // CHECK-DAG: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<28x3x4x5x27xi8>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x4x5x27x28xi8>) permutation = [1, 2, 3, 4, 0]
- // CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x28xi32>
+func.func @conv3d_i8(%input: tensor<1x49x48x47x27xi8>, %weights: tensor<43x3x4x5x27xi8>, %bias: tensor<43xi32>) -> () {
+ // CHECK-DAG: %[[TRANSPOSE:.+]] = linalg.transpose ins(%arg1 : tensor<43x3x4x5x27xi8>) outs(%[[TRANSPOSEDINIT:.+]] : tensor<3x4x5x27x43xi8>) permutation = [1, 2, 3, 4, 0]
+ // CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x43xi32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
- // CHECK-SAME: ins(%arg2 : tensor<28xi32>)
- // CHECK-SAME: outs(%[[INIT]] : tensor<1x47x45x43x28xi32>) {
+ // CHECK-SAME: ins(%arg2 : tensor<43xi32>)
+ // CHECK-SAME: outs(%[[INIT]] : tensor<1x47x45x43x43xi32>) {
// CHECK: ^bb0(%[[IN:.+]]: i32, %[[OUT:.+]]: i32):
// CHECK: linalg.yield %[[IN]] : i32
- // CHECK: } -> tensor<1x47x45x43x28xi32>
+ // CHECK: } -> tensor<1x47x45x43x43xi32>
// CHECK: %[[IZP:.+]] = arith.constant -128 : i32
// CHECK: %[[FZP:.+]] = arith.constant 42 : i32
// CHECK: linalg.conv_3d_ndhwc_dhwcf_q
// CHECK-SAME: {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>}
- // CHECK-SAME: ins(%arg0, %[[TRANSPOSE]], %[[IZP]], %[[FZP]] : tensor<1x49x48x47x27xi8>, tensor<3x4x5x27x28xi8>, i32, i32)
- // CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x28xi32>) -> tensor<1x47x45x43x28xi32>
+ // CHECK-SAME: ins(%arg0, %[[TRANSPOSE]], %[[IZP]], %[[FZP]] : tensor<1x49x48x47x27xi8>, tensor<3x4x5x27x43xi8>, i32, i32)
+ // CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x43xi32>) -> tensor<1x47x45x43x43xi32>
%input_zp = "tosa.const"() <{values = dense<-128> : tensor<1xi8>}> : () -> tensor<1xi8>
%weight_zp = "tosa.const"() <{values = dense<42> : tensor<1xi8>}> : () -> tensor<1xi8>
- %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xi8>, tensor<28x3x4x5x27xi8>, tensor<28xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x47x45x43x28xi32>
+ %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xi8>, tensor<43x3x4x5x27xi8>, tensor<43xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x47x45x43x43xi32>
return
}
// -----
// CHECK-LABEL: @conv3d_f16_f32_acc
-func.func @conv3d_f16_f32_acc(%input: tensor<1x49x48x47x27xf16>, %weights: tensor<28x3x4x5x27xf16>, %bias: tensor<28xf16>) -> () {
+func.func @conv3d_f16_f32_acc(%input: tensor<1x49x48x47x27xf16>, %weights: tensor<43x3x4x5x27xf16>, %bias: tensor<43xf16>) -> () {
%input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
%weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf16>}> : () -> tensor<1xf16>
- // CHECK: linalg.generic {{{.*}}} ins(%{{.*}} : tensor<28xf16>) outs(%{{.*}} : tensor<1x47x45x43x28xf32>)
+ // CHECK: linalg.generic {{{.*}}} ins(%{{.*}} : tensor<43xf16>) outs(%{{.*}} : tensor<1x47x45x43x43xf32>)
// CHECK: arith.extf %{{.*}} : f16 to f32
- // CHECK: %[[CONV:.*]] = linalg.conv_3d_ndhwc_dhwcf {{{.*}}} ins(%{{.*}}, %{{.*}} : tensor<1x49x48x47x27xf16>, tensor<3x4x5x27x28xf16>) outs(%{{.*}} : tensor<1x47x45x43x28xf32>) -> tensor<1x47x45x43x28xf32>
- // CHECK: tosa.cast %[[CONV]] : (tensor<1x47x45x43x28xf32>) -> tensor<1x47x45x43x28xf16>
- %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xf16>, tensor<28x3x4x5x27xf16>, tensor<28xf16>, tensor<1xf16>, tensor<1xf16>) -> tensor<1x47x45x43x28xf16>
+ // CHECK: %[[CONV:.*]] = linalg.conv_3d_ndhwc_dhwcf {{{.*}}} ins(%{{.*}}, %{{.*}} : tensor<1x49x48x47x27xf16>, tensor<3x4x5x27x43xf16>) outs(%{{.*}} : tensor<1x47x45x43x43xf32>) -> tensor<1x47x45x43x43xf32>
+ // CHECK: tosa.cast %[[CONV]] : (tensor<1x47x45x43x43xf32>) -> tensor<1x47x45x43x43xf16>
+ %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xf16>, tensor<43x3x4x5x27xf16>, tensor<43xf16>, tensor<1xf16>, tensor<1xf16>) -> tensor<1x47x45x43x43xf16>
return
}
diff --git a/mlir/test/Dialect/Tosa/availability.mlir b/mlir/test/Dialect/Tosa/availability.mlir
index 75126a11ac504..7374cfd1145b9 100644
--- a/mlir/test/Dialect/Tosa/availability.mlir
+++ b/mlir/test/Dialect/Tosa/availability.mlir
@@ -38,12 +38,12 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %
// -----
// CHECK-LABEL: conv3d
-func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<34xf32>) -> tensor<1x4x8x21x34xf32> {
+func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>) -> tensor<1x4x8x21x34xf32> {
// CHECK: profiles: [ [pro_int, pro_fp] ]
// CHECK: extensions: [ [int4, int16, fp8e4m3, fp8e5m2, bf16] ]
%input_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%weight_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<34xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
return %0 : tensor<1x4x8x21x34xf32>
}
diff --git a/mlir/test/Dialect/Tosa/canonicalize.mlir b/mlir/test/Dialect/Tosa/canonicalize.mlir
index d153474593d80..59fd490330691 100644
--- a/mlir/test/Dialect/Tosa/canonicalize.mlir
+++ b/mlir/test/Dialect/Tosa/canonicalize.mlir
@@ -379,19 +379,19 @@ func.func @conv2d_weight_2x2(%arg0: tensor<4x10x10x1xf32>) -> tensor<4x9x9x1xf32
// -----
// CHECK-LABEL: @depthwise_conv2d_stride_2
-func.func @depthwise_conv2d_stride_2(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<1x1x2x3xf32>, %arg2: tensor<6xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<4x10x10x6xf32> {
+func.func @depthwise_conv2d_stride_2(%arg0: tensor<4x11x11x2xf32>, %arg1: tensor<1x1x2x3xf32>, %arg2: tensor<6xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<4x6x6x6xf32> {
// CHECK: tosa.depthwise_conv2d
- %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 2>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<1x1x2x3xf32>, tensor<6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<4x10x10x6xf32>
- return %0 : tensor<4x10x10x6xf32>
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 2>, dilation = array<i64: 1, 1>} : (tensor<4x11x11x2xf32>, tensor<1x1x2x3xf32>, tensor<6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<4x6x6x6xf32>
+ return %0 : tensor<4x6x6x6xf32>
}
// -----
// CHECK-LABEL: @depthwise_conv2d_weight_2x2
-func.func @depthwise_conv2d_weight_2x2(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<2x2x2x3xf32>, %arg2: tensor<6xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<4x10x10x6xf32> {
+func.func @depthwise_conv2d_weight_2x2(%arg0: tensor<4x10x10x2xf32>, %arg1: tensor<2x2x2x3xf32>, %arg2: tensor<6xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<4x9x9x6xf32> {
// CHECK: tosa.depthwise_conv2d
- %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<2x2x2x3xf32>, tensor<6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<4x10x10x6xf32>
- return %0 : tensor<4x10x10x6xf32>
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1>} : (tensor<4x10x10x2xf32>, tensor<2x2x2x3xf32>, tensor<6xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<4x9x9x6xf32>
+ return %0 : tensor<4x9x9x6xf32>
}
// -----
diff --git a/mlir/test/Dialect/Tosa/error_if_check.mlir b/mlir/test/Dialect/Tosa/error_if_check.mlir
index f7ca0faa8bc9e..1238fcdeeed04 100644
--- a/mlir/test/Dialect/Tosa/error_if_check.mlir
+++ b/mlir/test/Dialect/Tosa/error_if_check.mlir
@@ -113,3 +113,155 @@ func.func @test_mul_non_zero_shift(%arg0: tensor<1x8x8x8xi16>, %arg1: tensor<1x8
%mul = tosa.mul %arg0, %arg1, %shift : (tensor<1x8x8x8xi16>, tensor<1x8x8x8xi16>, tensor<1xi8>) -> tensor<1x8x8x8xi32>
return %mul : tensor<1x8x8x8xi32>
}
+
+// -----
+
+func.func @test_depthwise_conv2d_invalid_padding(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op expect all padding values to be >= 0, got 0, 0, -1, 0}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, -1, 0>, stride = array<i64: 1, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_invalid_stride(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op expect all stride values to be >= 1, got 0, 1}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 0, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_invalid_dilation(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op expect all dilation values to be >= 1, got 1, 0}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 0>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_wholly_divisible_height(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op expected input_height - 1 + pad_top + pad_bottom - (kernel_height - 1) * dilation_y to be wholly divisible by stride_y, got (4 - 1 + 0 + 0 - (1 - 1) * 1) / 2}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 2, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_wholly_divisible_width(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op expected input_width - 1 + pad_left + pad_right - (kernel_width - 1) * dilation_x to be wholly divisible by stride_x, got (4 - 1 + 0 + 0 - (1 - 1) * 1) / 2}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 2>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_unexpected_output_height(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x6x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op calculated output height did not match expected: calculated=4, expected=6}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x6x4x8xf32>
+ return %0 : tensor<1x6x4x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_unexpected_output_width(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x6x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op calculated output width did not match expected: calculated=4, expected=6}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x6x8xf32>
+ return %0 : tensor<1x4x6x8xf32>
+}
+
+// -----
+
+func.func @test_depthwise_conv2d_invalid_bias_size(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<1x1x8x4xf32>, %arg2: tensor<7xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ // expected-error at +1 {{'tosa.depthwise_conv2d' op bias channels expected to be equal to output channels (8) or 1, got 7}}
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true}
+ : (tensor<1x4x4x4xf32>, tensor<1x1x8x4xf32>, tensor<7xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
+// -----
+
+func.func @test_conv3d_invalid_padding(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expect all padding values to be >= 0, got 0, -1, 0, -1, 0, 0}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 2, 1>, pad = array<i64: 0, -1, 0, -1, 0, 0>, stride = array<i64: 1, 1, 1>}
+ : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+// -----
+
+func.func @test_conv3d_invalid_stride(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expect all stride values to be >= 1, got 0, 1, 1}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 0, 1, 1>}
+ : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_invalid_dilation(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expect all dilation values to be >= 1, got 1, 0, 1}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 0, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>}
+ : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_input_depth(%arg0: tensor<1x4x16x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expected input_depth - 1 + pad_front + pad_back - (kernel_depth - 1) * dilation_d to be wholly divisible by stride_d, got (4 - 1 + 0 + 0 - (1 - 1) * 1) / 2}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 2, 1, 1>}
+ : (tensor<1x4x16x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_input_height(%arg0: tensor<1x4x10x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expected input_height - 1 + pad_top + pad_bottom - (kernel_height - 1) * dilation_y to be wholly divisible by stride_y, got (10 - 1 + 0 + 0 - (1 - 1) * 1) / 4}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 4, 1>}
+ : (tensor<1x4x10x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_input_width(%arg0: tensor<1x4x8x21x19xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op expected input_width - 1 + pad_left + pad_right - (kernel_width - 1) * dilation_x to be wholly divisible by stride_x, got (21 - 1 + 0 + 0 - (1 - 1) * 1) / 8}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 8>}
+ : (tensor<1x4x8x21x19xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_output_depth(%arg0: tensor<1x4x10x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x3x10x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op calculated output depth did not match expected: calculated=4, expected=3}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>}
+ : (tensor<1x4x10x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x3x10x21x34xf32>
+ return %0 : tensor<1x3x10x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_output_height(%arg0: tensor<1x4x16x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op calculated output height did not match expected: calculated=16, expected=8}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>}
+ : (tensor<1x4x16x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+ return %0 : tensor<1x4x8x21x34xf32>
+}
+
+// -----
+
+func.func @test_conv3d_wholly_divisible_output_width(%arg0: tensor<1x4x8x21x19xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x19x34xf32> {
+ // expected-error at +1 {{'tosa.conv3d' op calculated output width did not match expected: calculated=21, expected=19}}
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>}
+ : (tensor<1x4x8x21x19xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x19x34xf32>
+ return %0 : tensor<1x4x8x19x34xf32>
+}
diff --git a/mlir/test/Dialect/Tosa/invalid_extension.mlir b/mlir/test/Dialect/Tosa/invalid_extension.mlir
index 241e603e91c61..8011decae9ca8 100644
--- a/mlir/test/Dialect/Tosa/invalid_extension.mlir
+++ b/mlir/test/Dialect/Tosa/invalid_extension.mlir
@@ -26,9 +26,9 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xi8>, %arg1: tensor<8x1x1x4xi4>, %ar
}
// -----
-func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xi16>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<34xi48>, %arg3: tensor<1xi16>, %arg4: tensor<1xi8>) -> tensor<1x4x8x21x34xi48> {
+func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xi16>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<21xi48>, %arg3: tensor<1xi16>, %arg4: tensor<1xi8>) -> tensor<1x4x8x21x34xi48> {
// expected-error at +1 {{'tosa.conv3d' op illegal: requires [int16] but not enabled in target}}
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = i48, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi16>, tensor<34x1x1x1x17xi8>, tensor<34xi48>, tensor<1xi16>, tensor<1xi8>) -> tensor<1x4x8x21x34xi48>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = i48, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi16>, tensor<34x1x1x1x17xi8>, tensor<21xi48>, tensor<1xi16>, tensor<1xi8>) -> tensor<1x4x8x21x34xi48>
return %0 : tensor<1x4x8x21x34xi48>
}
@@ -445,10 +445,10 @@ func.func @test_conv2d_non_const_input_zp(%arg0: tensor<1x4x4x4xi8>, %arg1: tens
// -----
-func.func @test_conv3d_non_const_weight_zp(%arg0: tensor<1x4x8x21x17xi8>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<34xi32>, %arg3: tensor<1xi8>) -> tensor<1x4x8x21x34xi32> {
+func.func @test_conv3d_non_const_weight_zp(%arg0: tensor<1x4x8x21x17xi8>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<21xi32>, %arg3: tensor<1xi8>) -> tensor<1x4x8x21x34xi32> {
%input_zp = "tosa.const"() {values = dense<0> : tensor<1xi8> } : () -> tensor<1xi8>
// expected-error at +1 {{'tosa.conv3d' op expected compile time resolvable constant, but got variable value for operand #4}}
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %input_zp, %arg3 {acc_type = i32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi8>, tensor<34x1x1x1x17xi8>, tensor<34xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x4x8x21x34xi32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %input_zp, %arg3 {acc_type = i32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi8>, tensor<34x1x1x1x17xi8>, tensor<21xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x4x8x21x34xi32>
return %0 : tensor<1x4x8x21x34xi32>
}
diff --git a/mlir/test/Dialect/Tosa/level_check.mlir b/mlir/test/Dialect/Tosa/level_check.mlir
index b48f614770fcb..60f2904d878c1 100644
--- a/mlir/test/Dialect/Tosa/level_check.mlir
+++ b/mlir/test/Dialect/Tosa/level_check.mlir
@@ -619,182 +619,182 @@ func.func @test_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x2
// -----
-func.func @test_conv3d_dilation_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_dilation_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: dilation_d * KD <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 4097, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_dilation_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_dilation_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 4097, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_dilation_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_dilation_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 4097>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_d0(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_d0(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 8193, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_d1(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_d1(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 1, 8193, 0, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_top(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_top(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 8193, 1, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_bottom(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_bottom(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 8193, 0, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_left(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_left(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 8193, 1>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_pad_right(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_pad_right(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 8193>, stride = array<i64: 1, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_stride_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_stride_d(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 8193, 1, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_stride_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_stride_y(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 8193, 1>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_conv3d_stride_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x1x32x32x16xf32> {
+func.func @test_conv3d_stride_x(%arg0: tensor<1x1x32x32x8xf32>, %arg1: tensor<16x2x2x2x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.conv3d' op failed level check: stride <= MAX_STRIDE}}
%0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 1, 0, 1, 0, 1>, stride = array<i64: 1, 1, 8193>} :
- (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x1x32x32x16xf32>
- return %0 : tensor<1x1x32x32x16xf32>
+ (tensor<1x1x32x32x8xf32>, tensor<16x2x2x2x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_dilation_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: dilation_y * KH <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 4097, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_dilation_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: dilation_x * KW <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 4097>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_pad_top(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 8193, 1, 0, 1>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_pad_bottom(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_pad_bottom(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 8193, 0, 1>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_pad_left(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_pad_left(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 8193, 1>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_pad_right(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_pad_right(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: pad <= MAX_KERNEL}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 8193>, stride = array<i64: 1, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_stride_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_stride_y(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: stride <= MAX_STRIDE}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 8193, 1>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
-func.func @test_depthwise_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x64xf32> {
+func.func @test_depthwise_conv2d_stride_x(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<2x2x8x8xf32>, %arg2: tensor<64xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<*xf32> {
// expected-error at +1 {{'tosa.depthwise_conv2d' op failed level check: stride <= MAX_STRIDE}}
%0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 8193>} :
- (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x64xf32>
- return %0 : tensor<1x32x32x64xf32>
+ (tensor<1x32x32x8xf32>, tensor<2x2x8x8xf32>, tensor<64xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<*xf32>
+ return %0 : tensor<*xf32>
}
// -----
diff --git a/mlir/test/Dialect/Tosa/ops.mlir b/mlir/test/Dialect/Tosa/ops.mlir
index b64074e412ed1..c1181825f0c97 100644
--- a/mlir/test/Dialect/Tosa/ops.mlir
+++ b/mlir/test/Dialect/Tosa/ops.mlir
@@ -104,15 +104,15 @@ func.func @test_conv2d_q8xi4(%arg0: tensor<1x11x11x3xi8>) -> tensor<1x1x1x3xi8>
// -----
// CHECK-LABEL: conv3d
-func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<34xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<34xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
return %0 : tensor<1x4x8x21x34xf32>
}
// -----
// CHECK-LABEL: conv3d_with_local_bound
-func.func @test_conv3d_with_local_bound(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<34xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, local_bound = true} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<34xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
+func.func @test_conv3d_with_local_bound(%arg0: tensor<1x4x8x21x17xf32>, %arg1: tensor<34x1x1x1x17xf32>, %arg2: tensor<21xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x8x21x34xf32> {
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, local_bound = true} : (tensor<1x4x8x21x17xf32>, tensor<34x1x1x1x17xf32>, tensor<21xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x8x21x34xf32>
return %0 : tensor<1x4x8x21x34xf32>
}
@@ -823,8 +823,8 @@ func.func @test_conv2d_f8E5M2(%arg0: tensor<1x4x4x4xf8E5M2>, %arg1: tensor<8x1x1
// -----
// CHECK-LABEL: conv3d_f8E5M2
-func.func @test_conv3d_f8E5M2(%arg0: tensor<1x4x8x21x17xf8E5M2>, %arg1: tensor<34x1x1x1x17xf8E5M2>, %arg2: tensor<34xf16>, %arg3: tensor<1xf8E5M2>, %arg4: tensor<1xf8E5M2>) -> tensor<1x4x8x21x34xf16> {
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f16, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf8E5M2>, tensor<34x1x1x1x17xf8E5M2>, tensor<34xf16>, tensor<1xf8E5M2>, tensor<1xf8E5M2>) -> tensor<1x4x8x21x34xf16>
+func.func @test_conv3d_f8E5M2(%arg0: tensor<1x4x8x21x17xf8E5M2>, %arg1: tensor<34x1x1x1x17xf8E5M2>, %arg2: tensor<21xf16>, %arg3: tensor<1xf8E5M2>, %arg4: tensor<1xf8E5M2>) -> tensor<1x4x8x21x34xf16> {
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f16, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf8E5M2>, tensor<34x1x1x1x17xf8E5M2>, tensor<21xf16>, tensor<1xf8E5M2>, tensor<1xf8E5M2>) -> tensor<1x4x8x21x34xf16>
return %0 : tensor<1x4x8x21x34xf16>
}
@@ -968,8 +968,8 @@ func.func @test_conv2d_f8E4M3FN(%arg0: tensor<1x4x4x4xf8E4M3FN>, %arg1: tensor<8
// -----
// CHECK-LABEL: conv3d_f8E4M3FN
-func.func @test_conv3d_f8E4M3FN(%arg0: tensor<1x4x8x21x17xf8E4M3FN>, %arg1: tensor<34x1x1x1x17xf8E4M3FN>, %arg2: tensor<34xf16>, %arg3: tensor<1xf8E4M3FN>, %arg4: tensor<1xf8E4M3FN>) -> tensor<1x4x8x21x34xf16> {
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f16, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf8E4M3FN>, tensor<34x1x1x1x17xf8E4M3FN>, tensor<34xf16>, tensor<1xf8E4M3FN>, tensor<1xf8E4M3FN>) -> tensor<1x4x8x21x34xf16>
+func.func @test_conv3d_f8E4M3FN(%arg0: tensor<1x4x8x21x17xf8E4M3FN>, %arg1: tensor<34x1x1x1x17xf8E4M3FN>, %arg2: tensor<21xf16>, %arg3: tensor<1xf8E4M3FN>, %arg4: tensor<1xf8E4M3FN>) -> tensor<1x4x8x21x34xf16> {
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f16, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf8E4M3FN>, tensor<34x1x1x1x17xf8E4M3FN>, tensor<21xf16>, tensor<1xf8E4M3FN>, tensor<1xf8E4M3FN>) -> tensor<1x4x8x21x34xf16>
return %0 : tensor<1x4x8x21x34xf16>
}
diff --git a/mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir b/mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir
index 72669c62c95ca..efbb9e9d1843f 100644
--- a/mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir
+++ b/mlir/test/Dialect/Tosa/profile_pro_fp_unsupported.mlir
@@ -33,9 +33,9 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %
}
// -----
-func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf16>, %arg1: tensor<34x1x1x1x17xf16>, %arg2: tensor<34xf16>, %arg3: tensor<1xf16>, %arg4: tensor<1xf16>) -> tensor<1x4x8x21x34xf16> {
+func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xf16>, %arg1: tensor<34x1x1x1x17xf16>, %arg2: tensor<21xf16>, %arg3: tensor<1xf16>, %arg4: tensor<1xf16>) -> tensor<1x4x8x21x34xf16> {
// expected-error at +1 {{'tosa.conv3d' op illegal: requires [pro_fp] but not enabled in target}}
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf16>, tensor<34x1x1x1x17xf16>, tensor<34xf16>, tensor<1xf16>, tensor<1xf16>) -> tensor<1x4x8x21x34xf16>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xf16>, tensor<34x1x1x1x17xf16>, tensor<21xf16>, tensor<1xf16>, tensor<1xf16>) -> tensor<1x4x8x21x34xf16>
return %0 : tensor<1x4x8x21x34xf16>
}
diff --git a/mlir/test/Dialect/Tosa/profile_pro_int_unsupported.mlir b/mlir/test/Dialect/Tosa/profile_pro_int_unsupported.mlir
index e98b906377b22..b102eea5699dd 100644
--- a/mlir/test/Dialect/Tosa/profile_pro_int_unsupported.mlir
+++ b/mlir/test/Dialect/Tosa/profile_pro_int_unsupported.mlir
@@ -38,9 +38,9 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xi8>, %arg1: tensor<8x1x1x4xi8>, %ar
}
// -----
-func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xi8>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<34xi32>, %arg3: tensor<1xi8>, %arg4: tensor<1xi8>) -> tensor<1x4x8x21x34xi32> {
+func.func @test_conv3d(%arg0: tensor<1x4x8x21x17xi8>, %arg1: tensor<34x1x1x1x17xi8>, %arg2: tensor<21xi32>, %arg3: tensor<1xi8>, %arg4: tensor<1xi8>) -> tensor<1x4x8x21x34xi32> {
// expected-error at +1 {{'tosa.conv3d' op illegal: requires [pro_int] but not enabled in target}}
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = i32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi8>, tensor<34x1x1x1x17xi8>, tensor<34xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x4x8x21x34xi32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = i32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<1x4x8x21x17xi8>, tensor<34x1x1x1x17xi8>, tensor<21xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x4x8x21x34xi32>
return %0 : tensor<1x4x8x21x34xi32>
}
diff --git a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
index fe9da2ac09650..c6ac8074c0326 100644
--- a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
+++ b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
@@ -824,27 +824,27 @@ func.func @conv2d_strided(%input: tensor<1x13x15x1xf32>, %weights: tensor<1x1x1x
// -----
// CHECK-LABEL: @conv3d_static
-func.func @conv3d_static(%input: tensor<2x8x9x10x3xf32>, %weights: tensor<5x3x6x4x3xf32>, %bias: tensor<5xf32>, %input_zp: tensor<1xf32>, %weight_zp: tensor<1xf32>) -> () {
+func.func @conv3d_static(%input: tensor<2x8x9x10x3xf32>, %weights: tensor<5x3x6x4x3xf32>, %bias: tensor<7xf32>, %input_zp: tensor<1xf32>, %weight_zp: tensor<1xf32>) -> () {
// CHECK: -> tensor<2x6x4x7x5xf32>
- %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<5x3x6x4x3xf32>, tensor<5xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+ %0 = tosa.conv3d %input, %weights, %bias, %input_zp, %weight_zp {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<5x3x6x4x3xf32>, tensor<7xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
// -----
// CHECK-LABEL: @conv3d_dynamic_input
-func.func @conv3d_dynamic_input(%arg0: tensor<?x?x?x?x?xf32>, %arg1: tensor<5x3x6x4x3xf32>, %arg2: tensor<5xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+func.func @conv3d_dynamic_input(%arg0: tensor<?x?x?x?x?xf32>, %arg1: tensor<5x3x6x4x3xf32>, %arg2: tensor<7xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
// CHECK: -> tensor<?x?x?x?x5xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<?x?x?x?x?xf32>, tensor<5x3x6x4x3xf32>, tensor<5xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<?x?x?x?x?xf32>, tensor<5x3x6x4x3xf32>, tensor<7xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
// -----
// CHECK-LABEL: @conv3d_dynamic_weight
-func.func @conv3d_dynamic_weight(%arg0: tensor<2x8x9x10x3xf32>, %arg1: tensor<?x?x?x?x?xf32>, %arg2: tensor<5xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
- // CHECK: -> tensor<2x?x?x?x5xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<?x?x?x?x?xf32>, tensor<5xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+func.func @conv3d_dynamic_weight(%arg0: tensor<2x8x9x10x3xf32>, %arg1: tensor<?x?x?x?x?xf32>, %arg2: tensor<7xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+ // CHECK: -> tensor<2x?x?x?x7xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<?x?x?x?x?xf32>, tensor<7xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
@@ -860,27 +860,27 @@ func.func @conv3d_dynamic_bias(%arg0: tensor<2x8x9x10x3xf32>, %arg1: tensor<5x3x
// -----
// CHECK-LABEL: @conv3d_padded
-func.func @conv3d_padded(%arg0: tensor<2x8x9x10x3xf32>, %arg1: tensor<5x3x6x4x3xf32>, %arg2: tensor<5xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+func.func @conv3d_padded(%arg0: tensor<2x8x9x10x3xf32>, %arg1: tensor<5x3x6x4x3xf32>, %arg2: tensor<18xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
// CHECK: -> tensor<2x9x11x18x5xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 1, 2, 3, 4, 5, 6>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<5x3x6x4x3xf32>, tensor<5xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 1, 2, 3, 4, 5, 6>, stride = array<i64: 1, 1, 1>} : (tensor<2x8x9x10x3xf32>, tensor<5x3x6x4x3xf32>, tensor<18xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
// -----
// CHECK-LABEL: @conv3d_dilated
-func.func @conv3d_dilated(%arg0: tensor<2x12x14x16x3xf32>, %arg1: tensor<5x3x6x2x3xf32>, %arg2: tensor<5xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+func.func @conv3d_dilated(%arg0: tensor<2x12x14x16x3xf32>, %arg1: tensor<5x3x6x2x3xf32>, %arg2: tensor<12xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
// CHECK: -> tensor<2x6x4x12x5xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 3, 2, 4>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x12x14x16x3xf32>, tensor<5x3x6x2x3xf32>, tensor<5xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 3, 2, 4>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>} : (tensor<2x12x14x16x3xf32>, tensor<5x3x6x2x3xf32>, tensor<12xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
// -----
// CHECK-LABEL: @conv3d_strided
-func.func @conv3d_strided(%arg0: tensor<1x13x14x15x1xf32>, %arg1: tensor<1x1x1x1x1xf32>, %arg2: tensor<1xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
- // CHECK: -> tensor<1x5x7x4x1xf32>
- %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 3, 2, 4>} : (tensor<1x13x14x15x1xf32>, tensor<1x1x1x1x1xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
+func.func @conv3d_strided(%arg0: tensor<1x13x17x17x1xf32>, %arg1: tensor<1x1x1x1x1xf32>, %arg2: tensor<1xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+ // CHECK: -> tensor<1x5x9x5x1xf32>
+ %0 = tosa.conv3d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1, 1>, pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 3, 2, 4>} : (tensor<1x13x17x17x1xf32>, tensor<1x1x1x1x1xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<?x?x?x?x?xf32>
return
}
@@ -941,9 +941,9 @@ func.func @depthwise_conv2d_dilated(%arg0: tensor<2x12x14x3xf32>, %arg1: tensor<
// -----
// CHECK-LABEL: @depthwise_conv2d_strided
-func.func @depthwise_conv2d_strided(%arg0: tensor<1x13x14x1xf32>, %arg1: tensor<1x1x1x1xf32>, %arg2: tensor<1xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
- // CHECK: -> tensor<1x5x7x1xf32>
- %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 3, 2>} : (tensor<1x13x14x1xf32>, tensor<1x1x1x1xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x7x1xf32>
+func.func @depthwise_conv2d_strided(%arg0: tensor<1x13x15x1xf32>, %arg1: tensor<1x1x1x1xf32>, %arg2: tensor<1xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) {
+ // CHECK: -> tensor<1x5x8x1xf32>
+ %0 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 3, 2>} : (tensor<1x13x15x1xf32>, tensor<1x1x1x1xf32>, tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x5x8x1xf32>
return
}
@@ -1396,7 +1396,6 @@ func.func @test_dynamic_batch_fft2d(%arg0: tensor<?x4x8xf32>, %arg1: tensor<?x4x
func.func @test_unranked_equal(%arg0 : tensor<*xf32>, %arg1 : tensor<f32>) -> () {
// CHECK: tosa.equal %arg0, %arg1 : (tensor<*xf32>, tensor<f32>) -> tensor<*xi1>
%0 = tosa.equal %arg0, %arg1 : (tensor<*xf32>, tensor<f32>) -> tensor<*xi1>
-
return
}
More information about the Mlir-commits
mailing list