[Mlir-commits] [mlir] 34d586f - [MLIR][XeGPU] Extend SGMapAttr and Add ConvertLayoutOp (#132425)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Apr 8 17:46:09 PDT 2025


Author: Chao Chen
Date: 2025-04-08T19:46:05-05:00
New Revision: 34d586fdd548a34911caa068b557c4c0442f4d1d

URL: https://github.com/llvm/llvm-project/commit/34d586fdd548a34911caa068b557c4c0442f4d1d
DIFF: https://github.com/llvm/llvm-project/commit/34d586fdd548a34911caa068b557c4c0442f4d1d.diff

LOG: [MLIR][XeGPU] Extend SGMapAttr and Add ConvertLayoutOp (#132425)

This PR improves the SGMapAttr to enable workgroup-level programming, representing the first step in expanding the XeGPU dialect from subgroup to workgroup level, and renames it to LayoutAttr

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
    mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
    mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
    mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
    mlir/test/Dialect/XeGPU/invalid.mlir
    mlir/test/Dialect/XeGPU/ops.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index 0136b18ccfa94..ab5fb4a4a7de9 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -35,7 +35,7 @@ def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_td
         It is default to `Global`.
     2. `array_length`: It describes how many horizontally consecutive blocks
         will be loaded by a hardware load instruction. If the TensorDesc shape
-        is 8x16, with array_length = 2. The loaded block shape will be acctually
+        is 8x16, with array_length = 2. The loaded block shape will be actually
         8x32. Its default value is 1.
     3. `boundary_check`: It is used to indicates the hardware whether to do
         out-of-boundary check. The default value is true.
@@ -154,33 +154,128 @@ def XeGPU_FenceScopeAttr:
     let assemblyFormat = "$value";
 }
 
-def XeGPU_SGMapAttr : XeGPUAttr<"SGMap", "sg_map"> {
+def XeGPU_LayoutAttr : XeGPUAttr<"Layout", "layout"> {
   let summary = [{
-    Describes the mapping between work item (WI) and the 2D tensor specified by the tensor descriptor.
+    Describes the data distribution to subgroups and work-items for a tensor
+    specified by the tensor descriptor.
   }];
   let description = [{
-    To distribute the XeGPU operation to work items, the tensor_desc must be specified with the sg_map
-    attribute at the tensor description creation time.
-    Within the `sg_map`, `wi_layout` specifies the layout of work items,
-    describing the mapping of work items to the tensor.
-    wi_layout[0] x wi_layout[1] must be equal to the total number of work items within a subgroup.
-    `wi_data` specifies the minimum number of data elements assigned to each work item for a single distribution.
-
-    E.g., #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
-    In this example, the subgroup has 16 work items in wi_layout=[1, 16],
-    each accessing 1 element as specified by wi_data=[1, 1].
-
-    `wi_data[0] * wi_data[1]` can be greater than 1, meaning that each work item operates on multiple elements,
-    which is eventually lowered to "SIMT-flavor" vector, like SPIR-V vector or llvm vector, or packed to a storage data type.
-    The multiple elements indicated by `wi_data` can only be from one dimension and must be contiguous in the memory along either dimension.
+    XeGPU operations use `LayoutAttr` to define how data is distributed across subgroups and work-items.
+    This attribute is specified in tensor descriptors during tensor description creation. `LayoutAttr`
+    includes the following parameters:
+
+    * `sg_layout`: Specifies the total number of subgroups and their layout within a workgroup.
+      It is mandatory for workgroup-level programming. Its presence implies workgroup-level code.
+    * `sg_data`: Defines the data size accessed per subgroup. It is optionally used with `sg_layout`
+      for workgroup-level programming. When it is left empty, the size accessed per subgroup can be
+      derived from the tensor shape and `sg_layout` using the formula:
+      `sg_data[i] = tensor_shape[i] / sg_layout[i]`.
+    * `inst_data`: Specifies the data size that is processed by an instruction. It is optionally
+      used with lane_layout. When it is left empty, the data size per instruction is equivalent to
+      the sg_data for workgroup-level programming or equivalent to tensor shape for subgroup-level
+      programming.
+    * `lane_layout` : Specifies the total number of work-items and their arrangement within a subgroup.
+      It is mandatory for subgroup-level programming and optional for workgroup-level programming.
+    * `lane_data` : Specifies the shape of the tensor fragment that each lane accesses. It defines a single,
+      minimal distribution unit. Processing the entire tensor may require one or more distribution units per
+      hardware instruction.
+    * `order`: Specifies the dimension order used to linearize n-dimensional sg_layout and lane_layout to
+      1-dimensional layout. The first dimension in the order list is the fastest-changing dimension. If it
+      is not present, the default value is [1, 0].
+
+    ### Examples:
+      1. Subgroup level layout:
+      ```mlir
+      #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>
+      ```
+      In this example, there are 16 work-items per subgroup, and is organized as
+      [[0, 1, 2, .., 7],[8, 9, .., 15]]. The distribution unit is 1x1.
+
+      2. Subgroup level layout with order:
+      ```mlir
+      #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1], order = [0, 1]>
+      ```
+      In this example, there are 16 work-items per subgroup, and is organized as
+      [[0, 2, 4, ..., 14], [1, 3, 5, ..., 15]]. The distribution unit is 1x1.
+
+      3. Subgroup level layout with inst_data
+      ```mlir
+      #xegpu.layout<inst_data = [8, 16], lane_layout = [2, 8], lane_data = [2, 2]>
+      ```
+      In this example, the original problem size is partitioned into smaller subproblems of dimensions [8, 16],
+      which are then distributed among 16 work-items arranged as [[0, 1, 2, ..., 7], [8, 9, ..., 15]]. Each
+      work-item is assigned four 2x2 blocks in a round-robin manner.
+
+      4. Workgroup level layout:
+      ```mlir
+      #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [2, 8], lane_data = [1, 1]>
+      ```
+      In this example, the layout represents a workgroup distribution. A workgroup consists of 8 subgroups
+      arranged as [[0, 1, 2, 3], [4, 5, 6, 7]]. Each subgroup accesses a 16x16 block per instruction, which
+      is further distributed to 16 work items which is organized as [[0, 1, 2, .., 7],[8, 9, .., 15]].
+
+      5. Workgroup level layout with order:
+      ```mlir
+      #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [2, 8], lane_data = [1, 1], order = [0, 1]>
+      ```
+      In this example, the layout represents a workgroup distribution. A workgroup consists of 8 subgroups
+      arranged as [[0, 2, 4, 6], [1, 3, 5, 7]]. Each subgroup accesses a 16x16 block per instruction, which
+      is further distributed to 16 work items which is organized as [[0, 2, 4, ..., 14], [1, 3, 5, ..., 15]].
+
+      6. Workgroup level layout with inst_data:
+      ```mlir
+      #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], inst_data = [8, 16], lane_layout = [2, 8], lane_data = [1, 1]>
+      ```
+      This example is similar to the previous ones, but the `inst_data` parameter divides `sg_data` into two instructions,
+      each processing an 8x16 block. These blocks are further distributed across 16 work-items with a distribution unit of 1x1.
+      Unlike the 2x2 distribution unit in example 3, which results in accessing contiguous 2x2 blocks, the 1x1 distribution
+      unit may result in non-contiguous access.
   }];
+
   let parameters = (ins
-    ArrayRefParameter<"uint32_t">:$wi_layout,
-    ArrayRefParameter<"uint32_t">:$wi_data
+    OptionalParameter<"DenseI32ArrayAttr">: $sg_layout,
+    OptionalParameter<"DenseI32ArrayAttr">: $sg_data,
+    OptionalParameter<"DenseI32ArrayAttr">: $inst_data,
+    OptionalParameter<"DenseI32ArrayAttr">: $lane_layout,
+    OptionalParameter<"DenseI32ArrayAttr">: $lane_data,
+    OptionalParameter<"DenseI32ArrayAttr">: $order
   );
 
+  let builders = [
+    AttrBuilder<(ins "llvm::ArrayRef<int>": $lane_layout,
+                     "llvm::ArrayRef<int>": $lane_data),
+      [{
+        auto sg_layout = DenseI32ArrayAttr();
+        auto sg_data = DenseI32ArrayAttr();
+        auto inst_data = DenseI32ArrayAttr();
+        auto order = DenseI32ArrayAttr();
+        return $_get($_ctxt, sg_layout, sg_data, inst_data,
+                     DenseI32ArrayAttr::get($_ctxt, lane_layout),
+                     DenseI32ArrayAttr::get($_ctxt, lane_data), order);
+      }]>
+  ];
+
+  let extraClassDeclaration = [{
+    bool isWgLayout() {
+      return getSgLayout() != nullptr;
+    }
+
+    bool isSgLayout() {
+      return getSgLayout() == nullptr && getLaneLayout() != nullptr;
+    }
 
-  let hasCustomAssemblyFormat = 1;
+    int64_t getRank() {
+      if (auto attr = getSgLayout())
+        return attr.size();
+      if (auto attr = getInstData())
+        return attr.size();
+      if (auto attr = getLaneLayout())
+        return attr.size();
+      return 0;
+    }
+  }];
+
+  let assemblyFormat = "`<` struct(params) `>`";
   let genVerifyDecl = 1;
 }
 

diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index 56b836d707a7d..16a7f63d60c82 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -80,7 +80,7 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
         information e.g., memref<?x?xf16>, the strides information has to be explicitly
         passed via the "strides" and "const_strides" argument.
 
-    In SIMT mode, tensor descriptor is augmented with `SGMapAttr` which describes the
+    In SIMT mode, tensor descriptor is augmented with `LayoutAttr` which describes the
     mapping of the tensor descriptor to the work items.
 
     Example 1 (suppose the tensor shape inferred by the compiler is 8x16):
@@ -113,7 +113,7 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
     %c0 = arith.constant 0 : index
     %c1 = arith.constant 8 : index
     %1 = xegpu.create_nd_tdesc %0[%c0, %c0] : memref<1024x1024xf32>
-          -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+          -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
     ```
   }];
 
@@ -306,7 +306,7 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
     fp32 or fp64. It implies that vnni and transpose cannot exit at the
     same time.
 
-    In SIMT mode, LoadNdOp expects the tensor descriptor to be augmented with `SGMapAttr`
+    In SIMT mode, LoadNdOp expects the tensor descriptor to be augmented with `LayoutAttr`
     which describes the mapping of the tensor to the work items. In this case, result
     vector represents the data to be loaded by each work-item.
 
@@ -323,7 +323,7 @@ def XeGPU_LoadNdOp : XeGPU_Op<"load_nd", [
       xegpu.load_nd %1 {l1_hint = #xegpu.cache_hint<cached>,
                         l2_hint = #xegpu.cache_hint<uncached>}>
         : !xegpu.tensor_desc<8x16xf32,
-          #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xf32>
+          #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x1xf32>
     ```
 
 
@@ -364,7 +364,7 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", [
     of cache, L1, L2 and L3. If hardware does not have a correspoding cache,
     Corresponding cache hint attribute will be masked.
 
-    In SIMT mode, StoreNdOp expects the tensor descriptor to be augmented with `SGMapAttr`
+    In SIMT mode, StoreNdOp expects the tensor descriptor to be augmented with `LayoutAttr`
     which describes the mapping of the tensor to the work items. In this case, input
     vector represents the data to be stored by each work-item.
 
@@ -381,7 +381,7 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", [
                              l2_hint = #xegpu.cache_hint<write_back>,
                              l3_hint = #xegpu.cache_hint<write_through>}
                              : vector<8x1xf16>, !xegpu.tensor_desc<8x16xf16,
-                               #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+                               #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
     ```
 
 
@@ -422,7 +422,7 @@ def XeGPU_UpdateNdOffsetOp : XeGPU_Op<"update_nd_offset",
   Example 2 (SIMT mode):
   ```
     %2 = xegpu.update_nd_offset %1, [0, 16]:
-      !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+      !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   ```
   }];
 
@@ -482,7 +482,7 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
     the chunk_size if the chunk size is larger than 1.
 
     In SIMT mode, similar to `create_nd_tdesc` the resulting tensor descriptor is augmented
-    with `SGMapAttr` which describes the mapping of the tensor descriptor to the work items.
+    with `LayoutAttr` which describes the mapping of the tensor descriptor to the work items.
     In this case, the first dimension of the tensor descriptor represents the work-items, and
     the second dimension represents the chunk size.
 
@@ -517,7 +517,7 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
     %off = arith.constant dense<[0, 16, 32, 64]> : vector<4xindex>
     %1 = xegpu.create_tdesc %0, %off : memref<1024xf32>, vector<4xindex>
           -> TensorDesc<4x8xf32, #xegpu.scattered_tdesc_attr<chunk_size = 8>,
-          #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+          #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
     ```
   }];
 
@@ -623,7 +623,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [
     The mask operand masks out memory access so that it is safe to pass out-of-boundary
     addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
 
-    In SIMT mode, LoadGatherOp expects the tensor descriptor to be augmented with `SGMapAttr`
+    In SIMT mode, LoadGatherOp expects the tensor descriptor to be augmented with `LayoutAttr`
     which describes the mapping of the tensor to the work items. In this case, result vector
     represents the data to be loaded by each work-item. Each work-item recieves a `chunk_size`
     number of elements.
@@ -653,7 +653,7 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [
                             l2_hint = #xegpu.cache_hint<uncached>,
                             l3_hint = #xegpu.cache_hint<uncached>}
           : !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<memory_space=global, chunk_size=8>,
-            !xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>>
+            !xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>>
             vector<16xi1> -> vector<8x1xf32>
   ```
 
@@ -704,7 +704,7 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [
   has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
   introduced on purpose, making sure users are aware of this implicit transformation.
 
-  In SIMT mode, StoreScatterOp expects the tensor descriptor to be augmented with `SGMapAttr`
+  In SIMT mode, StoreScatterOp expects the tensor descriptor to be augmented with `LayoutAttr`
   which describes the mapping of the tensor to the work items. In this case, input vector
   represents the data to be stored by each work-item. Each work-item recieves a `chunk_size`
   number of elements.
@@ -732,7 +732,7 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [
                                  l2_hint = #xegpu.cache_hint<write_back>,
                                  l3_hint = #xegpu.cache_hint<write_through>}
           : vector<8x1xf32>, !xegpu.tensor_desc<16x8xf32, #xegpu.scattered_tdesc_attr<chunk_size=8>,
-            !xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>> vector<16xi1>
+            !xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>> vector<16xi1>
   ```
 
   }];
@@ -790,7 +790,7 @@ def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset",
       %off = arith.constant dense<[32, 32, 32, 32]> : vector<4xindex>
       %2 = xegpu.update_offset %1, %off :
               !xegpu.tensor_desc<4x2xf32, #xegpu.scattered_tdesc_attr<chunk_size=2>,
-              #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xindex>
+              #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xindex>
     ```
   }];
 
@@ -840,9 +840,9 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
     factor, which is computed as `32/bit_width_of_elem_type`. Thus, `B: vector<16x16xf16>`
     can be represented as `B: vector<8x16x2xf16>`.
 
-    In SIMT mode, DpasOp expects attributes `sg_map_a`, `sg_map_b`, and `sg_map_c`
-    which descibes the data fragment owned by each work-item w.r.t. the tensor
-    descriptor these data are loaded from.
+    In SIMT mode, DpasOp expects layout attributes `a`, `b`, and `c` (only if acc is used)
+    which describe the data fragment owned by each work-item w.r.t. the tensor descriptor
+    these data are loaded from.
 
     Note: on PVC, the hardware can perform load with VNNI transformation when data
           element type is 16-bit or lower precision, taking 2 or 4 elements from
@@ -853,9 +853,9 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
     XeGPU_DpasOpType : $lhs,
     XeGPU_DpasOpType : $rhs,
     Optional<XeGPU_Vector2DType>: $acc,
-    OptionalAttr<XeGPU_SGMapAttr>:$sg_map_a,
-    OptionalAttr<XeGPU_SGMapAttr>:$sg_map_b,
-    OptionalAttr<XeGPU_SGMapAttr>:$sg_map_c);
+    OptionalAttr<XeGPU_LayoutAttr>:$a_layout,
+    OptionalAttr<XeGPU_LayoutAttr>:$b_layout,
+    OptionalAttr<XeGPU_LayoutAttr>:$c_layout);
   let results = (outs XeGPU_Vector2DType: $result);
 
   let extraClassDeclaration = [{
@@ -876,6 +876,10 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
     VectorType getResultType() {
       return getResult().getType();
     }
+
+    bool hasAcc() {
+      return getAcc() != nullptr;
+    }
   }];
 
   let assemblyFormat = [{
@@ -979,4 +983,24 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
   let extraClassDeclaration = extraBaseClassDeclaration;
 }
 
+def XeGPU_ConvertLayoutOp: XeGPU_Op<"convert_layout", [Pure, AllTypesMatch<["source", "result"]>]> {
+    let summary = "Convert the layout of the input operand";
+    let description = [{
+      `convert_layout` adjusts the data distribution across subgroups and/or work-items by modifying
+      the `LayoutAttr`. Both `srcMap` and `resMap` must correspond to the same programming scope, such
+      as workgroup-level (wg) or subgroup-level (sg) code. This operation is not valid once the IR is
+      lowered to WI level because that is the end result of all distributions.
+    }];
+    let arguments = (ins XeGPU_Vector2DType: $source,
+                         XeGPU_LayoutAttr: $srcMap,
+                         XeGPU_LayoutAttr: $resMap
+                         );
+    let results = (outs XeGPU_Vector2DType: $result);
+    let assemblyFormat = [{
+        $source attr-dict `:` type($source)
+    }];
+
+    let hasVerifier = 1;
+}
+
 #endif // MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD

diff  --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index ccd91a928e1dd..173f1462fdd73 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -34,27 +34,24 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
         [ShapedTypeInterface], "::mlir::TensorType"> {
   let summary = "TensorDesc describing regions of interested data.";
   let description = [{
-    TensorDesc is a type designed to describe regions of the interested data as well as some
-    features that are unique to Intel hardware. Different with the builtin tensor type in MLIR,
-    it essentially only contains the meta data, and doesn't hold the data by itself. It is designed
-    to mainly support 2D block load/store and DPAS (matrix multiplication instruction) on Intel GPU.
-    It encodes the following information:
+    TensorDesc is a type designed to describe regions of interest in data, as well as some features
+    unique to Intel hardware. Unlike the built-in tensor type in MLIR, it essentially contains only
+    metadata and does not hold the data itself. It is primarily designed to support 2D block load/store
+    and DPAS (matrix multiplication instruction) on Intel GPUs. It encodes the following information:
 
-    * shape:  the sizes/shape of the intereted data block, e.g., 8x16 means 8 rows
+    * shape:  the sizes/shape of the interested data block, e.g., 8x16 means 8 rows
               and each row contains 16 contiguous data element. The rows could be
-              either contiguous or not, depends on whether the encoding attribute
-              is set or not.
-    * element_type: the data type of the data element, e.g., f16, f32.
+              either contiguous or not, depends on the encoding attribute. If the
+              encoding is a BlockTensorDescAttr, rows are contiguous. If the encoding
+              is a ScatterTensorDescAttr, rows are not necessary to be contiguous. If
+              encoding is not set, it is considered as a default BlockTensorDescAttr.
 
-    Similar to the builtin tensor, it also provides an optinal attribute to encoding
-    the following information via the TensorDescAttr object:
-    * memory_space (xegpu::MemorySpace): [optional] where the data is located,
-                global memory or shared memory. It is default to Global.
-    * array_length (int): [optional] The number of contiguous blocks with size as `shape`,
-               that will be loaded by block load at a time. It is default to 1.
-    * boundary_check (bool): [optional] indicates whether the operation detects the boundary
-                and pads with zero for out-of-boundary access. It is default to do boundary check.
+    * element_type: the data type of the data element, e.g., f16, f32.
 
+    Similar to the built-in tensor, it also provides optional attributes for encoding
+    additional information via either BlockTensorDescAttr or ScatterTensorDescAttr, or
+    supporting Workgroup, Subgroup, and workitem (or SIMT) level programmings via the
+    Layout attribute. Please check their definition for details.
 
     Syntax:
 
@@ -63,7 +60,9 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
     element-type ::= float-type | integer-type | index-type
     dim-list := (static-dim-list `x`)?
     static-dim-list ::= decimal-literal `x` decimal-literal
-    attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)? (, sg_map `<` wi_layout = value, wi_data = value `>`)?
+    attr-list = (, encoding-attr)? (, layout-attr)?
+    enconding-attr = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)?
+    layout-attr = (, layout `<`sg_layout = value, sg_data = value, inst_data = value, lane_layout = value, lane_data = value, order = value`>`)?
     ```
 
     Examples:
@@ -78,15 +77,28 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
     // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space.
     xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_space = slm>>
 
-    // A TensorDesc with a sg_map
-    xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    // A 1D TensorDesc with a layout for subgroup level programming, each lane access two continuous elements
+    xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [2]>>
+
+    // A 1D TensorDesc with a layout for subgroup level programming, each lane access two elements with stride = 16
+    xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+
+    // A TensorDesc with a layout for subgroup level programming
+    xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+
+    // A TensorDesc with a layout for workgroup level programming
+    xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>>
+
+    // A TensorDesc with a layout for workgroup level programming without lane_layout and lane_data
+    xegpu.tensor_desc<32x64xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16]>>
+
     ```
   }];
 
   let parameters = (ins ArrayRefParameter<"int64_t">: $shape,
                         "mlir::Type": $elementType,
                         OptionalParameter<"mlir::Attribute">: $encoding,
-                        OptionalParameter<"mlir::Attribute">: $sg_map);
+                        OptionalParameter<"mlir::Attribute">: $layout);
 
   let builders = [
     TypeBuilderWithInferredContext<(ins
@@ -95,13 +107,13 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
       CArg<"int", "1">: $array_length,
       CArg<"bool", "true">: $boundary_check,
       CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
-      CArg<"mlir::Attribute", "mlir::Attribute()">:$sg_map)>,
+      CArg<"mlir::Attribute", "mlir::Attribute()">:$layout)>,
     TypeBuilderWithInferredContext<(ins
       "llvm::ArrayRef<int64_t>": $shape,
       "mlir::Type": $elementType,
       CArg<"int", "1">: $chunk_size,
       CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
-      CArg<"mlir::Attribute", "mlir::Attribute()">:$sg_map)>
+      CArg<"mlir::Attribute", "mlir::Attribute()">:$layout)>
   ];
 
   let extraClassDeclaration = [{
@@ -127,8 +139,8 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
       return llvm::dyn_cast_if_present<ScatterTensorDescAttr>(getEncoding());
     }
 
-    SGMapAttr getSGMapAttr() const {
-      return llvm::dyn_cast_if_present<SGMapAttr>(getSgMap());
+    LayoutAttr getLayoutAttr() const {
+      return llvm::dyn_cast_if_present<LayoutAttr>(getLayout());
     }
 
     xegpu::MemorySpace getMemorySpace() const {

diff  --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
index 6868c393f99e6..171a15ce27b59 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -68,73 +68,74 @@ LogicalResult ScatterTensorDescAttr::verify(
 }
 
 //===----------------------------------------------------------------------===//
-// XeGPU_SGMapAttr
+// XeGPU_LayoutAttr
 //===----------------------------------------------------------------------===//
-namespace {
-template <typename T, unsigned N>
-LogicalResult parseIntArrayField(::mlir::AsmParser &parser,
-                                 llvm::SmallVector<T, N> &result,
-                                 llvm::StringRef fieldName) {
-  if (failed(parser.parseKeyword(fieldName))) {
-    parser.emitError(parser.getCurrentLocation(),
-                     "unexpected field name. Expected " + fieldName + ".");
-    return failure();
+LogicalResult
+LayoutAttr::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
+                   DenseI32ArrayAttr sg_layout, DenseI32ArrayAttr sg_data,
+                   DenseI32ArrayAttr inst_data, DenseI32ArrayAttr lane_layout,
+                   DenseI32ArrayAttr lane_data, DenseI32ArrayAttr order) {
+
+  // A valid layout must include at least one of sg_layout and lane_layout.
+  // sg_layout is essential for Workgroup layout, while lane_layout is
+  // required for Subgroup layout.
+  if (!sg_layout && !inst_data && !lane_layout) {
+    return emitError()
+           << "expected at least one of sg_layout, inst_data or lane_layout";
   }
 
-  if (failed(parser.parseEqual())) {
-    parser.emitError(parser.getCurrentLocation(), "expected '=' sign.");
-    return failure();
-  }
+  // generate code to check sg_laout, inst_data and lane_layout having the same
+  // rank if they are not null.
 
-  auto elemParser = [&]() -> llvm::ParseResult {
-    uint32_t elem = 0;
-    auto res = parser.parseInteger(elem);
-    result.push_back(elem);
-    return res;
-  };
+  if (sg_layout && inst_data && sg_layout.size() != inst_data.size()) {
+    return emitError()
+           << "expected sg_layout and inst_data to have the same rank";
+  }
 
-  return parser.parseCommaSeparatedList(AsmParser::Delimiter::Square,
-                                        elemParser, fieldName);
-}
-} // namespace
+  if (sg_layout && lane_layout && sg_layout.size() != lane_layout.size()) {
+    return emitError()
+           << "expected sg_layout and lane_layout to have the same rank";
+  }
 
-mlir::Attribute SGMapAttr::parse(::mlir::AsmParser &parser,
-                                 ::mlir::Type attrType) {
-  if (failed(parser.parseLess()))
-    return {};
+  if (inst_data && lane_layout && inst_data.size() != lane_layout.size()) {
+    return emitError()
+           << "expected inst_data and lane_layout to have the same rank";
+  }
 
-  llvm::SmallVector<uint32_t, 2> wi_layout, wi_data;
-  if (failed(parseIntArrayField(parser, wi_layout, "wi_layout")))
-    return {};
+  // sg_data is optional for Workgroup layout, but its presence requires
+  // sg_layout.
+  if (sg_data) {
+    if (!sg_layout)
+      return emitError() << "expected sg_layout being used with sg_data";
+    if (sg_data.size() != sg_layout.size())
+      return emitError()
+             << "expected sg_data and sg_layout to have the same rank";
+  }
 
-  if (failed(parser.parseComma()))
-    return {};
+  // lane_data is optional for Subgroup layout, but its presence requires
+  // lane_layout.
+  if (lane_data) {
+    if (!lane_layout)
+      return emitError() << "expected lane_layout being used with lane_data";
+    if (lane_data.size() != lane_layout.size())
+      return emitError()
+             << "expected lane_data and lane_layout to have the same rank";
+  }
 
-  if (failed(parseIntArrayField(parser, wi_data, "wi_data")))
-    return {};
+  if (order) {
+    if (!sg_layout && !lane_layout)
+      return emitError()
+             << "expected sg_layout/lane_layout being used with order";
 
-  return SGMapAttr::getChecked(
-      [&]() { return parser.emitError(parser.getNameLoc()); },
-      parser.getContext(), wi_layout, wi_data);
-}
+    if (sg_layout && order.size() != sg_layout.size())
+      return emitError()
+             << "expected order and sg_layout to have the same rank";
 
-void SGMapAttr::print(::mlir::AsmPrinter &printer) const {
-  printer << "<";
-  printer.printKeywordOrString("wi_layout");
-  printer << " = [" << getWiLayout() << "], ";
-  printer.printKeywordOrString("wi_data");
-  printer << " = [" << getWiData() << "]";
-  printer << ">";
-}
+    if (lane_layout && order.size() != lane_layout.size())
+      return emitError()
+             << "expected order and lane_layout to have the same rank";
+  }
 
-LogicalResult
-SGMapAttr::verify(llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
-                  llvm::ArrayRef<uint32_t> wi_layout,
-                  llvm::ArrayRef<uint32_t> wi_data) {
-  if (wi_layout.size() != 2)
-    return emitError() << "expected wi_layout of size 2";
-  if (wi_data.size() != 2)
-    return emitError() << "expected wi_data of size 2";
   return success();
 }
 
@@ -146,7 +147,7 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) {
   llvm::SmallVector<int64_t> shape;
   mlir::Type elementType;
   mlir::FailureOr<mlir::Attribute> encoding;
-  mlir::FailureOr<mlir::Attribute> sg_map;
+  mlir::FailureOr<mlir::Attribute> layout;
 
   // Parse literal '<'
   if (parser.parseLess())
@@ -169,8 +170,8 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) {
     mlir::Attribute attr;
     ParseResult res = parser.parseAttribute(attr);
     if (mlir::succeeded(res)) {
-      if (mlir::isa<SGMapAttr>(attr)) {
-        sg_map = attr;
+      if (mlir::isa<LayoutAttr>(attr)) {
+        layout = attr;
         continue;
       }
       if (mlir::isa<BlockTensorDescAttr, ScatterTensorDescAttr>(attr)) {
@@ -188,7 +189,7 @@ mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) {
   return TensorDescType::getChecked(
       [&]() { return parser.emitError(parser.getNameLoc()); },
       parser.getContext(), shape, elementType,
-      encoding.value_or(mlir::Attribute()), sg_map.value_or(mlir::Attribute()));
+      encoding.value_or(mlir::Attribute()), layout.value_or(mlir::Attribute()));
 }
 
 void TensorDescType::print(::mlir::AsmPrinter &printer) const {
@@ -208,8 +209,8 @@ void TensorDescType::print(::mlir::AsmPrinter &printer) const {
   if (auto encoding = getEncoding())
     printer << ", " << encoding;
 
-  if (auto sg_map = getSgMap())
-    printer << ", " << sg_map;
+  if (auto layout = getLayout())
+    printer << ", " << layout;
 
   printer << ">";
 }
@@ -218,29 +219,29 @@ TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
                                    mlir::Type elementType, int array_length,
                                    bool boundary_check,
                                    MemorySpace memory_space,
-                                   mlir::Attribute sg_map) {
+                                   mlir::Attribute layout) {
   auto context = elementType.getContext();
   auto attr = BlockTensorDescAttr::get(context, memory_space, array_length,
                                        boundary_check);
-  return Base::get(context, shape, elementType, attr, sg_map);
+  return Base::get(context, shape, elementType, attr, layout);
 }
 
 TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
                                    mlir::Type elementType, int chunk_size,
                                    MemorySpace memory_space,
-                                   mlir::Attribute sg_map) {
+                                   mlir::Attribute layout) {
   auto context = elementType.getContext();
   auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size);
-  return Base::get(context, shape, elementType, attr, sg_map);
+  return Base::get(context, shape, elementType, attr, layout);
 }
 
 LogicalResult TensorDescType::verify(
     llvm::function_ref<::mlir::InFlightDiagnostic()> emitError,
     llvm::ArrayRef<int64_t> shape, mlir::Type elementType,
-    mlir::Attribute encoding, mlir::Attribute sg_map) {
+    mlir::Attribute encoding, mlir::Attribute layout) {
   size_t rank = shape.size();
   // Low-pressure types are packed in 32-bit units.
-  unsigned packingFactor = 32 / elementType.getIntOrFloatBitWidth();
+  int32_t packingFactor = 32 / elementType.getIntOrFloatBitWidth();
   if (rank != 1 && rank != 2)
     return emitError() << "expected 1D or 2D tensor";
 
@@ -274,16 +275,13 @@ LogicalResult TensorDescType::verify(
       return emitError() << "SLM is not supported for 2D block tensor";
   }
 
-  if (auto sgMapAttr = llvm::dyn_cast_if_present<SGMapAttr>(sg_map)) {
-    ArrayRef<uint32_t> wiLayout = sgMapAttr.getWiLayout();
-    ArrayRef<uint32_t> wiData = sgMapAttr.getWiData();
+  if (auto layoutAttr = llvm::dyn_cast_if_present<LayoutAttr>(layout)) {
 
-    if (rank == 1) {
-      if (wiLayout[0] != 1 || wiData[0] != 1)
-        return emitError()
-               << "outer layout distribution and data mapping must be 1 "
-                  "for 1D tensor";
-    }
+    if (rank != (size_t)layoutAttr.getRank())
+      return emitError() << "expected layout rank to match tensor rank";
+
+    ArrayRef<int32_t> laneLayout = layoutAttr.getLaneLayout().asArrayRef();
+    ArrayRef<int32_t> laneData = layoutAttr.getLaneData().asArrayRef();
 
     if (scatterAttr) {
       // Validate subgroup mapping rules for scattered tensors.
@@ -291,46 +289,40 @@ LogicalResult TensorDescType::verify(
       // [sg_size, chunk_size] will be [1] or [1, 32/element_ty_bit_width]
       // respectively, the mapping should reflect that. This is because each
       // work item access data in 32 bit granularity.
-      if (wiData[0] != 1)
+
+      if (rank > 1 && laneData[0] != 1)
         return emitError()
                << "cannot map over non-contiguous scattered row elements";
-      if (wiData[1] != packingFactor)
+      if (laneData.back() != packingFactor)
         return emitError() << "work item data mapping must match the number of "
                               "contiguous elements";
     }
 
-    // For 1D tensor, pad the shape with an outer unit dimension to allow common
-    // validation logic.
-    SmallVector<int64_t> tensorShape(shape);
-    if (rank == 1)
-      tensorShape = {1, tensorShape.back()};
-
-    size_t dims = tensorShape.size();
-    for (size_t i = 0; i < dims; ++i) {
-      uint32_t numElemPerWi = wiLayout[i] * wiData[i];
-      if (tensorShape[i] < numElemPerWi || tensorShape[i] % numElemPerWi != 0)
-        return emitError() << "cannot distribute " << tensorShape[i] << " over "
-                           << wiLayout[i] << " work items with " << wiData[i]
-                           << " elements each";
+    for (size_t i = 0; i < shape.size(); ++i) {
+      uint32_t numElemPerWi = laneLayout[i] * laneData[i];
+      if (shape[i] < numElemPerWi || shape[i] % numElemPerWi != 0)
+        return emitError() << "cannot distribute " << shape[i] << " over "
+                           << laneLayout[i] << " work items with "
+                           << laneData[i] << " elements each";
     }
   }
 
   return success();
 }
 
-// If tensor descriptor has a sg_map attribute it is used in SIMT mode.
+// If tensor descriptor has a layout attribute it is used in SIMT mode.
 // In this mode, the distributed vector shape is determined as follows:
 // Definitions:
-//        wi_data_size = wi_data[0] × wi_data[1]
-//        subgroup_size = wi_layout[0] × wi_layout[1]
-//        distribution_unit_size = subgroup_size × wi_data_size
+//        lane_data_size = lane_data[0] × lane_data[1]
+//        subgroup_size = lane_layout[0] × lane_layout[1]
+//        distribution_unit_size = subgroup_size × lane_data_size
 // ---------------------------------------------------------------------
 // Case 1: Regular loads/stores.
 // ---------------------------------------------------------------------
 // Distributed vector shape must be:
-//        [chunk_size / wi_data_size, wi_data_size]
+//        [chunk_size / lane_data_size, lane_data_size]
 // If the tensor descriptor shape is 1D, first dimension is ignored (set to 1).
-//        [wi_data_size]
+//        [lane_data_size]
 // ---------------------------------------------------------------------
 // Case 2: Block loads/stores
 // ---------------------------------------------------------------------
@@ -338,24 +330,24 @@ LogicalResult TensorDescType::verify(
 //        tensor_size = tensor_desc[0] * .. * tensor_desc[r-1] * array_length
 //        n_distribution_units = tensor_size / distribution_unit_size
 // Given above definitions, the following conditions must be met:
-//        * tensor_desc[0] % (wi_layout[0] × wi_data[0]) == 0
-//        * tensor_desc[1] % (wi_layout[1] × wi_data[1]) == 0
+//        * tensor_desc[0] % (lane_layout[0] × lane_data[0]) == 0
+//        * tensor_desc[1] % (lane_layout[1] × lane_data[1]) == 0
 // Distributed vector shape must be:
-//        [n_distribution_units, wi_data_size]
+//        [n_distribution_units, lane_data_size]
 FailureOr<VectorType> TensorDescType::getDistributedVectorType() {
-  auto sgMap = llvm::dyn_cast_if_present<SGMapAttr>(getSgMap());
-  // If no sg_map is provided, tensor desc is not used in SIMT mode.
-  if (!sgMap)
+  auto layout = llvm::dyn_cast_if_present<LayoutAttr>(getLayout());
+  // If no layout is provided, tensor desc is not used in SIMT mode.
+  if (!layout)
     return failure();
 
-  SmallVector<int64_t> wiData(sgMap.getWiData());
-  SmallVector<int64_t> wiLayout(sgMap.getWiLayout());
+  SmallVector<int64_t> laneData(layout.getLaneData().asArrayRef());
+  SmallVector<int64_t> laneLayout(layout.getLaneLayout().asArrayRef());
   auto tdescShape = getShape();
 
-  auto wiDataSize = 1, sgSize = 1;
-  for (auto [wiDim, wiDataDim] : llvm::zip_equal(wiLayout, wiData)) {
-    wiDataSize *= wiDataDim;
-    sgSize *= wiDim;
+  auto laneDataSize = 1, sgSize = 1;
+  for (auto [laneDim, laneDataDim] : llvm::zip_equal(laneLayout, laneData)) {
+    laneDataSize *= laneDataDim;
+    sgSize *= laneDim;
   }
 
   // Case 1: regular loads/stores
@@ -364,35 +356,27 @@ FailureOr<VectorType> TensorDescType::getDistributedVectorType() {
     auto chunkSize = scatterAttr.getChunkSize().getInt();
     // Verify if the first dimension of the tensor descriptor shape is
     // distributable.
-    assert(tdescShape[0] % (wiLayout[0]) == 0 &&
+    assert(tdescShape[0] % (laneLayout[0]) == 0 &&
            "tensor descriptor shape is not distributable");
     if (chunkSize > 1)
-      return VectorType::get({chunkSize / wiDataSize, wiDataSize},
+      return VectorType::get({chunkSize / laneDataSize, laneDataSize},
                              getElementType());
-    return VectorType::get({wiDataSize}, getElementType());
+    return VectorType::get({laneDataSize}, getElementType());
   }
 
   // Case 2: block loads/stores
-  // Tensor descriptor shape can be 1D. For the 1D case, outer dims of wiData
-  // and wiLayout must be 1.
-  if (tdescShape.size() == 1) {
-    assert((wiData[0] == 1 && wiLayout[0] == 1) &&
-           "wi_data[0] and wi_layout[0] must be 1 for 1D tensor descriptor");
-    wiData = {wiData[1]};
-    wiLayout = {wiLayout[1]};
-  }
   // Check if the tensor descriptor shape is distributable.
   int64_t tensorSize = 1;
-  for (auto [tdescDim, wiDim, wiDataDim] :
-       llvm::zip_equal(tdescShape, wiLayout, wiData)) {
-    assert((tdescDim % (wiDim * wiDataDim) == 0) &&
+  for (auto [tdescDim, laneDim, laneDataDim] :
+       llvm::zip_equal(tdescShape, laneLayout, laneData)) {
+    assert((tdescDim % (laneDim * laneDataDim) == 0) &&
            "tensor descriptor shape is not distributable");
     tensorSize *= tdescDim;
   }
   // tensorSize must be adjusted for array_length.
   tensorSize *= getArrayLength();
 
-  return VectorType::get({tensorSize / (sgSize * wiDataSize), wiDataSize},
+  return VectorType::get({tensorSize / (sgSize * laneDataSize), laneDataSize},
                          getElementType());
 }
 

diff  --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 3bdf3fb218b45..0d67e3d70f945 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -78,18 +78,18 @@ static LogicalResult
 isArgShapesValid(TensorDescType tdescTy, VectorType valueTy,
                  ArrayRef<int64_t> adjustedTdescShape,
                  function_ref<InFlightDiagnostic()> emitError) {
-  auto sgMap = tdescTy.getSGMapAttr();
+  auto layout = tdescTy.getLayoutAttr();
   auto valueShape = valueTy.getShape();
-  // sg_map not present means IR is in SIMD mode. In this case value shape must
+  // layout not present means IR is in SIMD mode. In this case value shape must
   // match adjusted tensor descriptor shape.
-  if (!sgMap)
+  if (!layout)
     return valueShape == adjustedTdescShape
                ? success()
                : emitError()
                      << "Value shape " << makeString(valueShape)
                      << " is not consistent with tensor descriptor " << tdescTy;
 
-  // sg_map present means IR is in SIMT mode. In this case sg_map determines the
+  // layout present means IR is in SIMT mode. In this case layout determines the
   // value shape.
   auto expectedValueShapeOrFailure = tdescTy.getDistributedVectorType();
   assert(succeeded(expectedValueShapeOrFailure) &&
@@ -105,6 +105,34 @@ isArgShapesValid(TensorDescType tdescTy, VectorType valueTy,
                    << " for tensor descriptor " << tdescTy;
 }
 
+// Checks if the given shape is evenly distributed based on the layout
+// and data factors provided by the LayoutAttr. The function ensures that
+// each dimension of the shape can be evenly divided by the corresponding
+// data factor, and the resulting quotient can be evenly divided by the
+// layout factor. Returns `true` if the shape is evenly distributed,
+// otherwise `false`.
+static bool isEvenDistributed(llvm::ArrayRef<int64_t> shape,
+                              xegpu::LayoutAttr attr) {
+  assert(attr && "Layout attribute is missing.");
+  llvm::SmallVector<int32_t> defaults(shape.size(), 1);
+  llvm::ArrayRef<int32_t> layout, data;
+  if (auto sg_layout = attr.getSgLayout()) {
+    layout = sg_layout.asArrayRef();
+    auto sg_data = attr.getSgData();
+    data = sg_data ? sg_data.asArrayRef() : defaults;
+  } else {
+    layout = attr.getLaneLayout().asArrayRef();
+    auto lane_data = attr.getLaneData();
+    data = lane_data ? lane_data.asArrayRef() : defaults;
+  }
+  for (auto [dimSize, dataFactor, layoutFactor] :
+       llvm::zip_equal(shape, data, layout)) {
+    if (dimSize % dataFactor != 0 || (dimSize / dataFactor) % layoutFactor != 0)
+      return false;
+  }
+  return true;
+}
+
 //===----------------------------------------------------------------------===//
 // XeGPU_CreateNdDescOp
 //===----------------------------------------------------------------------===//
@@ -569,61 +597,101 @@ void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
 LogicalResult DpasOp::verify() {
   int64_t lhsRank = getLhsType().getRank();
   int64_t rhsRank = getRhsType().getRank();
-  int64_t resultRank = getResultType().getRank();
+  int64_t resRank = getResultType().getRank();
   auto lhsShape = getLhsType().getShape();
   auto rhsShape = getRhsType().getShape();
-  auto resultShape = getResultType().getShape();
-
-  auto sgMapA = getSgMapAAttr();
-  auto sgMapB = getSgMapBAttr();
-  auto sgMapC = getSgMapCAttr();
+  auto resShape = getResultType().getShape();
+
+  auto aLayout = getALayoutAttr();
+  auto bLayout = getBLayoutAttr();
+  auto cLayout = getCLayoutAttr();
+
+  // make sure the layout attribute is either set for every available
+  // operand or simply not set at all. C is special, since ACC is optional.
+  auto hasValidLayoutAttrs = [&]() {
+    bool result = (aLayout != nullptr) ^ (bLayout != nullptr);
+    if (hasAcc()) {
+      result |= (aLayout != nullptr) ^ (cLayout != nullptr);
+    }
+    return !result;
+  };
 
-  // If sg_maps are not present, then the operation is in SIMD mode.
-  if (!sgMapA && !sgMapB && !sgMapC) {
-    if (lhsRank != 2 || (rhsRank != 2 && rhsRank != 3) || resultRank != 2)
+  if (!hasValidLayoutAttrs())
+    return emitOpError(
+        "layout attributes should be either set for all operands (for SIMT "
+        "code) or not set at all (for SIMD code).");
+
+  // query the scope from aLayout (a valid setting).
+  if (aLayout) {
+    // In SIMT mode, All data fragments must be 2D
+    if (lhsRank != 2 || rhsRank != 2 || resRank != 2)
+      return emitOpError("expecting lhs, rhs, and result to be a 2D vector.");
+
+    auto laneLayoutA = aLayout.getLaneLayout();
+    auto laneLayoutB = bLayout.getLaneLayout();
+    auto laneLayoutC = cLayout.getLaneLayout();
+    // Obtain the expanded shapes of the operands and result using lane_layout.
+    // NOTE: For B, get rid of the packed dimension for the expanded shape.
+    SmallVector<int64_t> expandedShapeA = {lhsShape[0] * laneLayoutA[0],
+                                           lhsShape[1] * laneLayoutA[1]};
+    SmallVector<int64_t> expandedShapeB = {
+        rhsShape[0] * rhsShape[1] * laneLayoutB[0], 1 * laneLayoutB[1]};
+    SmallVector<int64_t> expandedShapeC = {resShape[0] * laneLayoutC[0],
+                                           resShape[1] * laneLayoutC[1]};
+    auto bK = expandedShapeB[0];
+    if (bK != expandedShapeA[1])
+      return emitOpError("K-dimension mismatch.");
+    if (expandedShapeA[0] != expandedShapeC[0])
+      return emitOpError("M-dimension mismatch.");
+    if (expandedShapeB[1] != expandedShapeC[1])
+      return emitOpError("N-dimension mismatch.");
+  } else { // For other scopes, operands' shape should match the mxkxn
+           // semantics.
+    if (lhsRank != 2 || (rhsRank != 2 && rhsRank != 3) || resRank != 2)
       return emitOpError(
           "expecting lhs and result to be a 2D vector, and rhs to be either "
           "2D or 3D (packed) vector.");
     auto bK = rhsRank == 3 ? rhsShape[0] * rhsShape[2] : rhsShape[0];
     if (bK != lhsShape[1])
       return emitOpError("K-dimension mismatch.");
-    if (lhsShape[0] != resultShape[0])
+    if (lhsShape[0] != resShape[0])
       return emitOpError("M-dimension mismatch.");
-    if (rhsShape[1] != resultShape[1])
+    if (rhsShape[1] != resShape[1])
       return emitOpError("N-dimension mismatch.");
-    return success();
   }
-  // Otherwise, in SIMT mode we expect sg_map attributes for all operands and
-  // result of DPAS operation.
-  if (!sgMapA || !sgMapB || !sgMapC)
-    return emitOpError("sg_map attributes for all operands and outputs are "
-                       "expected in SIMT xegpu::Dpas operation");
-
-  // In SIMT mode, All data fragments must be 2D
-  if (lhsRank != 2 || rhsRank != 2 || resultRank != 2)
-    return emitOpError("expecting lhs, rhs, and result to be a 2D vector.");
-
-  auto wiLayoutA = sgMapA.getWiLayout();
-  auto wiLayoutB = sgMapB.getWiLayout();
-  auto wiLayoutC = sgMapC.getWiLayout();
-  // Obtain the expanded shapes of the operands and result using wi_layout.
-  // NOTE: For B, get rid of the packed dimension for the expanded shape.
-  SmallVector<int64_t> expandedShapeA = {lhsShape[0] * wiLayoutA[0],
-                                         lhsShape[1] * wiLayoutA[1]};
-  SmallVector<int64_t> expandedShapeB = {
-      rhsShape[0] * rhsShape[1] * wiLayoutB[0], 1 * wiLayoutB[1]};
-  SmallVector<int64_t> expandedShapeC = {resultShape[0] * wiLayoutC[0],
-                                         resultShape[1] * wiLayoutC[1]};
-  auto bK = expandedShapeB[0];
-  if (bK != expandedShapeA[1])
-    return emitOpError("K-dimension mismatch.");
-  if (expandedShapeA[0] != expandedShapeC[0])
-    return emitOpError("M-dimension mismatch.");
-  if (expandedShapeB[1] != expandedShapeC[1])
-    return emitOpError("N-dimension mismatch.");
-
   return success();
 }
+
+//===----------------------------------------------------------------------===//
+// XeGPU_ConvertLayoutOp
+//===----------------------------------------------------------------------===//
+LogicalResult ConvertLayoutOp::verify() {
+  auto srcMap = getSrcMapAttr();
+  auto resMap = getResMapAttr();
+  if (!srcMap)
+    return emitOpError("expected srcMap.");
+  if (!resMap)
+    return emitOpError("expected resMap.");
+
+  if (srcMap == resMap)
+    return emitOpError("expected 
diff erent srcMap and resMap.");
+
+  // both srcMap and resMap should be WgLayout or SgLayout at the same time.
+  if ((!srcMap.isWgLayout() || !resMap.isWgLayout()) &&
+      (!srcMap.isSgLayout() || !resMap.isSgLayout()))
+    return emitOpError(
+        "expected srcMap and resMap be WgLayout or SgLayout at the same time.");
+
+  auto shape = getSource().getType().getShape();
+  if (!isEvenDistributed(shape, srcMap))
+    return emitOpError("invalid srcMap, data cannot be evenly distributed.");
+
+  if (!isEvenDistributed(shape, resMap))
+    return emitOpError("invalid resMap, data cannot be evenly distributed.");
+
+  return mlir::success();
+}
+
 } // namespace xegpu
 } // namespace mlir
 

diff  --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir
index 88e9bbf78945b..48df33a591908 100644
--- a/mlir/test/Dialect/XeGPU/invalid.mlir
+++ b/mlir/test/Dialect/XeGPU/invalid.mlir
@@ -78,25 +78,25 @@ func.func @test_load_nd_vc_3(%src: memref<8x16xf16>) {
 }
 
 // -----
-func.func @test_load_nd_sg_map(%src: memref<24x32xf32>) {
+func.func @test_load_nd_layout(%src: memref<24x32xf32>) {
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<8x16xf32,   #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   // expected-error at +1 {{Result shape [8, 2] is not consistent with distributed vector shape [8, 1]}}
   %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>,
       l2_hint = #xegpu.cache_hint<uncached>}>
-    : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    : !xegpu.tensor_desc<8x16xf32,   #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
     -> vector<8x2xf32>
   return
 }
 
 // -----
-func.func @test_load_nd_sg_map(%src: memref<24x32xf32>) {
+func.func @test_load_nd_layout(%src: memref<24x32xf32>) {
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   // expected-error at +1 {{Result shape [8] is not consistent with distributed vector shape [1, 1]}}
   %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>,
       l2_hint = #xegpu.cache_hint<uncached>}>
-    : !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    : !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
     -> vector<8xf32>
   return
 }
@@ -134,22 +134,22 @@ func.func @test_store_nd_vc_2(%dst: memref<16xf16>) {
 }
 
 // -----
-func.func @test_store_nd_sg_map(%dst: memref<24x32xf32>, %data: vector<8x2xf32>) {
+func.func @test_store_nd_layout(%dst: memref<24x32xf32>, %data: vector<8x2xf32>) {
   %1 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<8x16xf32,   #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   // expected-error at +1 {{Result shape [8, 2] is not consistent with distributed vector shape [8, 1] for tensor descriptor}}
   xegpu.store_nd %data, %1
-    : vector<8x2xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    : vector<8x2xf32>, !xegpu.tensor_desc<8x16xf32,   #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   return
 }
 
 // -----
-func.func @test_store_nd_sg_map(%dst: memref<24x32xf32>, %data: vector<2xf32>) {
+func.func @test_store_nd_layout(%dst: memref<24x32xf32>, %data: vector<2xf32>) {
   %1 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   // expected-error at +1 {{Result shape [2] is not consistent with distributed vector shape [1, 1] for tensor descriptor}}
   xegpu.store_nd %data, %1
-    : vector<2xf32>, !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    : vector<2xf32>, !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   return
 }
 
@@ -245,69 +245,69 @@ func.func @test_prefetch_vc_2(%src: ui64) {
 }
 
 // -----
-func.func @test_create_tdesc_sg_map_1(%src: ui64) {
+func.func @test_create_tdesc_layout_1(%src: ui64) {
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  // expected-error at +1 {{outer layout distribution and data mapping must be 1 for 1D tensor}}
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  // expected-error at +1 {{expected layout rank to match tensor rank}}
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>,   #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   return
 }
 
 // -----
-func.func @test_create_tdesc_sg_map_2(%src: ui64) {
+func.func @test_create_tdesc_layout_2(%src: ui64) {
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   // expected-error at +1 {{cannot map over non-contiguous scattered row elements}}
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [2, 1]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,   #xegpu.layout<lane_layout = [1, 4], lane_data = [2, 1]>>
   return
 }
 
 // -----
-func.func @test_create_tdesc_sg_map_3(%src: ui64) {
+func.func @test_create_tdesc_layout_3(%src: ui64) {
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   // expected-error at +1 {{work item data mapping must match the number of contiguous elements}}
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x3xf32, #xegpu.scatter_tdesc_attr<chunk_size = 3>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x3xf32, #xegpu.scatter_tdesc_attr<chunk_size = 3>,   #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
   return
 }
 
 // -----
-func.func @test_load_gather_sg_map_1(%src: ui64) {
+func.func @test_load_gather_layout_1(%src: ui64) {
   %0 = arith.constant dense<1>: vector<4xi1>
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,   #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   // expected-error at +1 {{Result shape [1, 2] is not consistent with distributed vector shape [2, 1] for tensor descriptor}}
-  %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1> -> vector<1x2xf32>
+  %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1> -> vector<1x2xf32>
   return
 }
 
 // -----
-func.func @test_load_gather_sg_map_2(%src: ui64) {
+func.func @test_load_gather_layout_2(%src: ui64) {
   %0 = arith.constant dense<1>: vector<4xi1>
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   // expected-error at +1 {{esult shape [2] is not consistent with distributed vector shape [2, 1] for tensor descriptor}}
-  %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1> -> vector<2xf32>
+  %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1> -> vector<2xf32>
   return
 }
 
 
 // -----
-func.func @test_store_scatter_sg_map_1(%src: ui64) {
+func.func @test_store_scatter_layout_1(%src: ui64) {
   %0 = arith.constant dense<1>: vector<4xi1>
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %val = arith.constant dense<2.9>: vector<1x2xf32>
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   // expected-error at +1 {{Result shape [1, 2] is not consistent with distributed vector shape [2, 1] for tensor descriptor}}
-  xegpu.store %val, %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : vector<1x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1>
+  xegpu.store %val, %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : vector<1x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1>
   return
 }
 
 // -----
-func.func @test_store_scatter_sg_map_2(%src: ui64) {
+func.func @test_store_scatter_layout_2(%src: ui64) {
   %0 = arith.constant dense<1>: vector<4xi1>
   %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %val = arith.constant dense<2.9>: vector<2xf32>
-  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   // expected-error at +1 {{esult shape [2] is not consistent with distributed vector shape [2, 1] for tensor descriptor}}
-  xegpu.store %val, %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : vector<2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1>
+  xegpu.store %val, %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, transpose}> : vector<2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>,  #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1>
   return
 }
 
@@ -394,18 +394,18 @@ func.func @test_dpas_4(%a : vector<8x16xf16>, %b: vector<8x8x2xf16>) {
 }
 
 // -----
-func.func @test_dpas_sg_map_1(%a : vector<8x1xf16>, %b: vector<8x2xf16>) {
-  // expected-error at +1 {{sg_map attributes for all operands and outputs are expected in SIMT xegpu::Dpas operation}}
-  %1 = xegpu.dpas %a, %b {sg_map_a = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>} : vector<8x1xf16>, vector<8x2xf16> -> vector<8x1xf32>
+func.func @test_dpas_layout_1(%a : vector<8x1xf16>, %b: vector<8x2xf16>) {
+  // expected-error at +1 {{layout attributes should be either set for all operands (for SIMT code) or not set at all (for SIMD code)}}
+  %1 = xegpu.dpas %a, %b {a_layout =  #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<8x1xf16>, vector<8x2xf16> -> vector<8x1xf32>
   return
 }
 
 // -----
-func.func @test_dpas_sg_map_2(%a : vector<8x1xf16>, %b: vector<4x2xf16>) {
+func.func @test_dpas_layout_2(%a : vector<8x1xf16>, %b: vector<4x2xf16>) {
   // expected-error at +1 {{K-dimension mismatch}}
-  %1 = xegpu.dpas %a, %b {sg_map_a = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>,
-                          sg_map_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>,
-                          sg_map_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>}
+  %1 = xegpu.dpas %a, %b {a_layout =  #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
+                          b_layout =  #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+                          c_layout =  #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}
                           : vector<8x1xf16>, vector<4x2xf16> -> vector<8x1xf32>
   return
 }
@@ -438,16 +438,16 @@ func.func @tensor_desc_invalid_rank_1(%src: memref<24x32xf32>) {
 // -----
 func.func @tensor_desc_1D_invalid_map_layout(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-      // expected-error at +1 {{outer layout distribution and data mapping must be 1 for 1D tensor}}
-      !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [2, 16], wi_data = [1, 1]>>
+      // expected-error at +1 {{expected layout rank to match tensor rank}}
+      !xegpu.tensor_desc<16xf32,  #xegpu.layout<lane_layout = [2, 16], lane_data = [1, 1]>>
   return
 }
 
 // -----
 func.func @tensor_desc_1D_invalid_map_data(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-      // expected-error at +1 {{outer layout distribution and data mapping must be 1 for 1D tensor}}
-      !xegpu.tensor_desc<16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
+      // expected-error at +1 {{expected layout rank to match tensor rank}}
+      !xegpu.tensor_desc<16xf32,  #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
   return
 }
 
@@ -455,7 +455,7 @@ func.func @tensor_desc_1D_invalid_map_data(%src: memref<24x32xf32>) {
 func.func @tensor_desc_invalid_map_layout(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
       // expected-error at +1 {{cannot distribute 8 over 16 work items with 1 elements each}}
-      !xegpu.tensor_desc<4x8xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+      !xegpu.tensor_desc<4x8xf32,  #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   return
 }
 
@@ -463,7 +463,7 @@ func.func @tensor_desc_invalid_map_layout(%src: memref<24x32xf32>) {
 func.func @tensor_desc_invalid_map_layout_1(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
       // expected-error at +1 {{cannot distribute 4 over 8 work items with 1 elements each}}
-      !xegpu.tensor_desc<4x8xf32, #xegpu.sg_map<wi_layout = [8, 2], wi_data = [1, 1]>>
+      !xegpu.tensor_desc<4x8xf32,  #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>>
   return
 }
 
@@ -471,7 +471,7 @@ func.func @tensor_desc_invalid_map_layout_1(%src: memref<24x32xf32>) {
 func.func @tensor_desc_invalid_map_data(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
       // expected-error at +1 {{cannot distribute 4 over 2 work items with 4 elements each}}
-      !xegpu.tensor_desc<4x8xf32, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [4, 1]>>
+      !xegpu.tensor_desc<4x8xf32,  #xegpu.layout<lane_layout = [2, 8], lane_data = [4, 1]>>
   return
 }
 
@@ -479,7 +479,7 @@ func.func @tensor_desc_invalid_map_data(%src: memref<24x32xf32>) {
 func.func @tensor_desc_invalid_map_data_1(%src: memref<24x32xf32>) {
   %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
       // expected-error at +1 {{cannot distribute 4 over 8 work items with 1 elements each}}
-      !xegpu.tensor_desc<4x8xf32, #xegpu.sg_map<wi_layout = [8, 2], wi_data = [1, 2]>>
+      !xegpu.tensor_desc<4x8xf32,  #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 2]>>
   return
 }
 
@@ -490,7 +490,7 @@ func.func @tensor_desc_scatter_invalid_map_data(%src: ui64) {
       // expected-error at +1 {{cannot map over non-contiguous scattered row elements}}
       !xegpu.tensor_desc<4x2xf32,
         #xegpu.scatter_tdesc_attr<chunk_size = 2>,
-        #xegpu.sg_map<wi_layout = [1, 1], wi_data = [2, 1]>>
+         #xegpu.layout<lane_layout = [1, 1], lane_data = [2, 1]>>
   return
 }
 
@@ -500,7 +500,7 @@ func.func @tensor_desc_scatter_invalid_map_data_1(%src: ui64, %offsets: vector<1
       // expected-error at +1 {{work item data mapping must match the number of contiguous elements}}
       !xegpu.tensor_desc<16xf32,
         #xegpu.scatter_tdesc_attr<chunk_size = 1>,
-        #xegpu.sg_map<wi_layout = [1, 8], wi_data = [1, 2]>>
+         #xegpu.layout<lane_layout = [8], lane_data = [2]>>
   return
 }
 
@@ -510,7 +510,7 @@ func.func @tensor_desc_scatter_invalid_chunk_size_1D(%src: ui64, %offsets: vecto
       // expected-error at +1 {{expected non-contiguous elements for 1D tensor}}
       !xegpu.tensor_desc<16xf32,
         #xegpu.scatter_tdesc_attr<chunk_size = 2>,
-        #xegpu.sg_map<wi_layout = [1, 8], wi_data = [1, 2]>>
+         #xegpu.layout<lane_layout = [1, 8], lane_data = [1, 2]>>
   return
 }
 
@@ -520,6 +520,142 @@ func.func @tensor_desc_scatter_invalid_chunk_size_2D(%src: ui64, %offsets: vecto
       // expected-error at +1 {{expected chunk blocks for 2D tensor}}
       !xegpu.tensor_desc<16x2xf32,
         #xegpu.scatter_tdesc_attr<chunk_size = 1>,
-        #xegpu.sg_map<wi_layout = [8, 1], wi_data = [1, 2]>>
+         #xegpu.layout<lane_layout = [8, 1], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @test_convert_layout_same_map(%a: vector<32x64xf16>) {
+  // expected-error at +1 {{expected 
diff erent srcMap and resMap}}
+  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
+                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  gpu.return
+}
+
+// -----
+func.func @test_convert_layout_unmatch(%a: vector<32x64xf16>) {
+  // expected-error at +1 {{expected srcMap and resMap be WgLayout or SgLayout at the same time}}
+  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  gpu.return
+}
+
+// -----
+func.func @tensor_desc_invalid_layout_attr(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+         // expected-error at +1 {{expected at least one of sg_layout, inst_data or lane_layout}}
+         #xegpu.layout<sg_data = [16, 2], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected sg_layout and lane_layout to have the same rank}}
+        #xegpu.layout<sg_layout = [1, 1, 1], sg_data = [16, 2, 1], lane_layout = [8, 1], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected sg_layout and inst_data to have the same rank}}
+        #xegpu.layout<sg_layout = [1, 1, 1], sg_data = [16, 2, 1], inst_data = [16, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected inst_data and lane_layout to have the same rank}}
+        #xegpu.layout<inst_data = [16, 2, 1], lane_layout = [8, 1], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected lane_data and lane_layout to have the same rank}}
+        #xegpu.layout<inst_data = [16, 2], lane_layout = [8, 1], lane_data = [1, 2, 1]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected sg_data and sg_layout to have the same rank}}
+        #xegpu.layout<sg_layout = [1, 1], sg_data = [16, 2, 1], inst_data = [16, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      // expected-error at +1 {{expected layout rank to match tensor rank}}
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        #xegpu.layout<sg_layout = [1], sg_data = [32], inst_data = [16]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_invalid_sg_data(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected sg_layout being used with sg_data}}
+        #xegpu.layout<sg_data = [16, 2], lane_layout = [8, 1], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected lane_layout being used with lane_data}}
+        #xegpu.layout<inst_data = [16, 2], lane_data = [1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected sg_layout/lane_layout being used with order}}
+        #xegpu.layout<inst_data = [16, 2], order = [0, 1]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected order and sg_layout to have the same rank}}
+        #xegpu.layout<sg_layout = [1, 1], sg_data = [16, 2], order = [0, 1, 2]>>
+  return
+}
+
+// -----
+func.func @tensor_desc_invalid_sg_data(%src: ui64, %offsets: vector<16xindex>) {
+  %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> ->
+      !xegpu.tensor_desc<16x2xf32,
+        #xegpu.scatter_tdesc_attr<chunk_size = 2>,
+        // expected-error at +1 {{expected order and lane_layout to have the same rank}}
+        #xegpu.layout<lane_layout = [8, 1], lane_data = [1, 2], order = [0, 1, 2]>>
   return
 }

diff  --git a/mlir/test/Dialect/XeGPU/ops.mlir b/mlir/test/Dialect/XeGPU/ops.mlir
index c32f1905454b6..e9895e0d0a71d 100644
--- a/mlir/test/Dialect/XeGPU/ops.mlir
+++ b/mlir/test/Dialect/XeGPU/ops.mlir
@@ -15,9 +15,9 @@ gpu.func @test_create_nd_tdesc_vc_1(%src: memref<24x32xf32>) {
 
 // CHECK: gpu.func @test_create_nd_tdesc_simt_1(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_create_nd_tdesc_simt_1(%src: memref<24x32xf32>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -34,8 +34,8 @@ gpu.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : ind
 gpu.func @test_create_nd_tdesc_simt_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
   //CHECK: %[[C:.*]] = arith.constant 1 : index
   %c1 = arith.constant 1 : index
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][%[[arg3]], %[[arg4]]], [%[[arg2]], %[[arg1]]], [%[[arg1]], %[[C]]] : ui64 -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] : ui64 -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][%[[arg3]], %[[arg4]]], [%[[arg2]], %[[arg1]]], [%[[arg1]], %[[C]]] : ui64 -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] : ui64 -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -48,8 +48,8 @@ gpu.func @test_create_nd_tdesc_vc_3(%src: memref<24x32xf32>) {
 
 // CHECK: gpu.func @test_create_nd_tdesc_simt_3(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_create_nd_tdesc_simt_3(%src: memref<24x32xf32>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -62,8 +62,8 @@ gpu.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32>) {
 
 // CHECK: gpu.func @test_create_nd_tdesc_simt_4(%[[arg0:.*]]: memref<2x24x32xf32>) {
 gpu.func @test_create_nd_tdesc_simt_4(%src: memref<2x24x32xf32>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -76,8 +76,8 @@ gpu.func @test_create_nd_tdesc_vc_5(%src: memref<2x24x32xf32, 3>) {
 
 // CHECK: gpu.func @test_create_nd_tdesc_simt_5(%[[arg0:.*]]: memref<2x24x32xf32, 3>) {
 gpu.func @test_create_nd_tdesc_simt_5(%src: memref<2x24x32xf32, 3>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   gpu.return
 }
 
@@ -90,8 +90,8 @@ gpu.func @test_create_nd_tdesc_vc_6(%src: memref<24x32xf32>) {
 
 // CHECK: gpu.func @test_create_nd_tdesc_simt_6(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_create_nd_tdesc_simt_6(%src: memref<24x32xf32>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -106,10 +106,10 @@ gpu.func @test_prefetch_nd_vc(%src: memref<24x32xf16>) {
 
 // CHECK: gpu.func @test_prefetch_nd_simt(%[[arg0:.*]]: memref<24x32xf16>) {
 gpu.func @test_prefetch_nd_simt(%src: memref<24x32xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: xegpu.prefetch_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  // CHECK: xegpu.prefetch_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -125,11 +125,11 @@ gpu.func @test_load_nd_vc(%src: memref<8x16xf16>) {
 
 // CHECK: func @test_load_nd_simt(%[[arg0:.*]]: memref<8x16xf16>) {
 gpu.func @test_load_nd_simt(%src: memref<8x16xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, packed}> : !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<4x2xf16>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, packed}> : !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<4x2xf16>
   %2 = xegpu.load_nd %1 <{packed, l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>
-       : !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<4x2xf16>
+       : !xegpu.tensor_desc<8x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<4x2xf16>
   gpu.return
 }
 
@@ -144,10 +144,10 @@ gpu.func @test_load_nd_vc_2(%src: memref<8x16xf16>) {
 
 // CHECK: func @test_load_nd_simt_2(%[[arg0:.*]]: memref<8x16xf16>) {
 gpu.func @test_load_nd_simt_2(%src: memref<8x16xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<1x1xf16>
-  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<1x1xf16>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>> -> vector<1x1xf16>
+  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>> -> vector<1x1xf16>
   gpu.return
 }
 
@@ -162,11 +162,11 @@ gpu.func @test_load_nd_vc_3(%src: memref<24x32xf32>) {
 
 // CHECK: func @test_load_nd_simt_3(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_load_nd_simt_3(%src: memref<24x32xf32>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xf32>
-  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xf32>
+    !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x1xf32>
+  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8x1xf32>
   gpu.return
 }
 
@@ -181,11 +181,11 @@ gpu.func @test_load_nd_vc_4(%src: memref<24x32xf16>) {
 
 // CHECK: func @test_load_nd_simt_4(%[[arg0:.*]]: memref<24x32xf16>) {
 gpu.func @test_load_nd_simt_4(%src: memref<24x32xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> ->
-    !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<8x2xf16>
-  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<8x2xf16>
+    !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<8x2xf16>
+  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<8x2xf16>
   gpu.return
 }
 
@@ -200,11 +200,11 @@ gpu.func @test_load_nd_vc_5(%src: memref<24x32xf32>) {
 
 // CHECK: func @test_load_nd_simt_5(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_load_nd_simt_5(%src: memref<24x32xf32>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<32xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> ->
-    !xegpu.tensor_desc<32xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<32xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<2x1xf32>
-  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<32xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<2x1xf32>
+    !xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>> -> vector<2x1xf32>
+  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<32xf32, #xegpu.layout<lane_layout = [16], lane_data = [1]>> -> vector<2x1xf32>
   gpu.return
 }
 
@@ -219,11 +219,11 @@ gpu.func @test_load_nd_vc_6(%src: memref<24x32xf16>) {
 
 // CHECK: func @test_load_nd_simt_6(%[[arg0:.*]]: memref<24x32xf16>) {
 gpu.func @test_load_nd_simt_6(%src: memref<24x32xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<32x1xf16>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<32x1xf16>
   %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> :
-    !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<32x1xf16>
+    !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<32x1xf16>
   gpu.return
 }
 
@@ -238,11 +238,11 @@ gpu.func @test_load_nd_vc_7(%src: memref<24x32xf16>) {
 
 // CHECK: func @test_load_nd_simt_7(%[[arg0:.*]]: memref<24x32xf16>) {
 gpu.func @test_load_nd_simt_7(%src: memref<24x32xf16>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<16x2xf16>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2 : i64>, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<16x2xf16>
   %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> :
-    !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>> -> vector<16x2xf16>
+    !xegpu.tensor_desc<16x16xf16, #xegpu.block_tdesc_attr<array_length = 2>, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> -> vector<16x2xf16>
   gpu.return
 }
 
@@ -257,10 +257,10 @@ gpu.func @test_load_nd_vc_8(%src: memref<24x32xf32>) {
 
 // CHECK: func @test_load_nd_simt_8(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_load_nd_simt_8(%src: memref<24x32xf32>) {
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32, #xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32, #xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32, #xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>> -> vector<8x1xf32>
-  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32, #xegpu.sg_map<wi_layout = [16, 1], wi_data = [1, 1]>> -> vector<8x1xf32>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16x8xf32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.load_nd %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>> -> vector<8x1xf32>
+  %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose = array<i64: 1, 0>}> : !xegpu.tensor_desc<16x8xf32, #xegpu.layout<lane_layout = [16, 1], lane_data = [1, 1]>> -> vector<8x1xf32>
   gpu.return
 }
 
@@ -279,11 +279,11 @@ gpu.func @test_store_nd_vc(%dst: memref<24x32xf16>) {
 gpu.func @test_store_nd_simt(%src: memref<24x32xf16>) {
    // CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<48x1xf16>
   %1 = arith.constant dense<1.0>: vector<48x1xf16>
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<24x32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<24x32xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   %2 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> ->
-    !xegpu.tensor_desc<24x32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: xegpu.store_nd %[[C]], %[[R0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<48x1xf16>, !xegpu.tensor_desc<24x32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<48x1xf16>, !xegpu.tensor_desc<24x32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<24x32xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  // CHECK: xegpu.store_nd %[[C]], %[[R0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<48x1xf16>, !xegpu.tensor_desc<24x32xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<48x1xf16>, !xegpu.tensor_desc<24x32xf16, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -305,11 +305,11 @@ gpu.func @test_store_nd_vc_2(%dst: memref<24x32xf16>) {
 gpu.func @test_store_nd_simt_2(%src: memref<24x32xf16>) {
    // CHECK: %[[C:.*]] = arith.constant dense<1.000000e+00> : vector<2x1xf16>
   %1 = arith.constant dense<1.0>: vector<2x1xf16>
-  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<32xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   %2 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> ->
-    !xegpu.tensor_desc<32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: xegpu.store_nd %[[C]], %[[R0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<2x1xf16>, !xegpu.tensor_desc<32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<2x1xf16>, !xegpu.tensor_desc<32xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+    !xegpu.tensor_desc<32xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  // CHECK: xegpu.store_nd %[[C]], %[[R0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<2x1xf16>, !xegpu.tensor_desc<32xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
+  xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>: vector<2x1xf16>, !xegpu.tensor_desc<32xf16, #xegpu.layout<lane_layout = [16], lane_data = [1]>>
   gpu.return
 }
 
@@ -324,10 +324,10 @@ gpu.func @test_update_nd_tdesc_vc(%src: memref<24x32xf32>) {
 
 // CHECK: gpu.func @test_update_nd_tdesc_simt(%[[arg0:.*]]: memref<24x32xf32>) {
 gpu.func @test_update_nd_tdesc_simt(%src: memref<24x32xf32>) {
-  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  // CHECK: %[[R1:.*]] = xegpu.update_nd_offset %[[REG]], [0, 16] : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
-  %2 = xegpu.update_nd_offset %1, [0, 16]: !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  // CHECK: %[[R1:.*]] = xegpu.update_nd_offset %[[REG]], [0, 16] : !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
+  %2 = xegpu.update_nd_offset %1, [0, 16]: !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -344,8 +344,8 @@ gpu.func @test_create_tdesc_vc(%src: ui64) {
 gpu.func @test_create_tdesc_simt(%src: ui64) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -363,8 +363,8 @@ gpu.func @test_create_tdesc_vc_1(%src: memref<?xf32, 3>) {
 gpu.func @test_create_tdesc_simt_1(%src: memref<?xf32, 3>) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space =  slm, chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  %1 = xegpu.create_tdesc %src, %0 : memref<?xf32, 3>, vector<4xindex>  -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : memref<?xf32, 3>, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space =  slm, chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %0 : memref<?xf32, 3>, vector<4xindex>  -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -383,7 +383,7 @@ gpu.func @test_create_tdesc_simt_2(%src: memref<?xf32>) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : memref<?xf32>, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>
-  %1 = xegpu.create_tdesc %src, %0 : memref<?xf32>, vector<4xindex>  -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<chunk_size = 1>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %0 : memref<?xf32>, vector<4xindex>  -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<chunk_size = 1>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>
   gpu.return
 }
 
@@ -401,8 +401,8 @@ gpu.func @test_create_tdesc_vc_3(%src: ui64) {
 gpu.func @test_create_tdesc_simt_3(%src: ui64) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
-  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
+  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
   gpu.return
 }
 
@@ -425,10 +425,10 @@ gpu.func @test_load_simt(%src: ui64) {
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   //CHECK: %[[cst1:.*]] = arith.constant dense<true> : vector<4xi1>
   %1 = arith.constant dense<1>: vector<4xi1>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1> -> vector<2x1xf32>
-  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1> -> vector<2x1xf32>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1> -> vector<2x1xf32>
+  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1> -> vector<2x1xf32>
   gpu.return
 }
 
@@ -451,10 +451,10 @@ gpu.func @test_load_simt_2(%src: ui64) {
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   //CHECK: %[[cst1:.*]] = arith.constant dense<true> : vector<4xi1>
   %1 = arith.constant dense<1>: vector<4xi1>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>
-  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>
-  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>, vector<4xi1> -> vector<1xf32>
-  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>, vector<4xi1> -> vector<1xf32>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>
+  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>
+  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>, vector<4xi1> -> vector<1xf32>
+  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>, vector<4xi1> -> vector<1xf32>
   gpu.return
 }
 
@@ -477,10 +477,10 @@ gpu.func @test_load_simt_3(%src: ui64) {
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   //CHECK: %[[cst1:.*]] = arith.constant dense<true> : vector<4xi1>
   %1 = arith.constant dense<1>: vector<4xi1>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
-  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
-  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>, vector<4xi1> -> vector<4x2xf16>
-  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>, vector<4xi1> -> vector<4x2xf16>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
+  %2 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
+  //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>, vector<4xi1> -> vector<4x2xf16>
+  %3 = xegpu.load %2, %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : !xegpu.tensor_desc<4x8xf16, #xegpu.scatter_tdesc_attr<chunk_size = 8>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>, vector<4xi1> -> vector<4x2xf16>
   gpu.return
 }
 
@@ -509,10 +509,10 @@ gpu.func @test_store_simt(%src: ui64) {
   %1 = arith.constant dense<1>: vector<4xi1>
   //CHECK: %[[cst2:.*]] = arith.constant dense<2.900000e+00> : vector<2x1xf32>
   %2 = arith.constant dense<2.9>: vector<2x1xf32>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<2x1xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1>
-  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<2x1xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xi1>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<2x1xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1>
+  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<2x1xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xi1>
   gpu.return
 }
 
@@ -541,10 +541,10 @@ gpu.func @test_store_simt_2(%src: ui64) {
   %1 = arith.constant dense<1>: vector<4xi1>
   //CHECK: %[[cst2:.*]] = arith.constant {{.*}} : vector<1x2xf16>
   %2 = arith.constant dense<2.9>: vector<1x2xf16>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
-  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>
-  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<1x2xf16>, !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>, vector<4xi1>
-  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<1x2xf16>, !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 2]>>, vector<4xi1>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
+  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>
+  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<1x2xf16>, !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>, vector<4xi1>
+  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}> : vector<1x2xf16>, !xegpu.tensor_desc<4x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>>, vector<4xi1>
   gpu.return
 }
 
@@ -572,10 +572,10 @@ gpu.func @test_store_simt_3(%src: ui64) {
   %1 = arith.constant dense<1>: vector<4xi1>
   //CHECK: %[[cst2:.*]] = arith.constant dense<2.900000e+00> : vector<1xf32>
   %2 = arith.constant dense<2.9>: vector<1xf32>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>
-  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>
-  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<1xf32>, !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>, vector<4xi1>
-  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<1xf32>, !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.sg_map<wi_layout = [1, 4], wi_data = [1, 1]>>, vector<4xi1>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>
+  %3 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>
+  //CHECK: xegpu.store %[[cst2]], %[[R0]], %[[cst1]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<1xf32>, !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>, vector<4xi1>
+  xegpu.store %2, %3, %1 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}> : vector<1xf32>, !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4], lane_data = [1]>>, vector<4xi1>
   gpu.return
 }
 
@@ -583,10 +583,10 @@ gpu.func @test_store_simt_3(%src: ui64) {
 gpu.func @test_prefetch_simt(%src: ui64) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
-  xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
+  xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   gpu.return
 }
 
@@ -605,13 +605,13 @@ gpu.func @test_prefetch_vc(%src: ui64) {
 // CHECK: gpu.func @test_create_update_tdesc_simt(%[[arg0:.*]]: ui64) {
 gpu.func @test_create_update_tdesc_simt(%src: ui64) {
   //CHECK: %[[cst:.*]] = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]], %[[cst]] : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   //CHECK: %[[st:.*]] = arith.constant dense<32> : vector<4xindex>
-  //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], %[[st]] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xindex>
+  //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], %[[st]] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xindex>
   %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex>
-  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>
+  %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>
   %s = arith.constant dense<[32, 32, 32, 32]> : vector<4xindex>
-  %2 = xegpu.update_offset %1, %s : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.sg_map<wi_layout = [4, 1], wi_data = [1, 1]>>, vector<4xindex>
+  %2 = xegpu.update_offset %1, %s : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>>, vector<4xindex>
   gpu.return
 }
 
@@ -637,12 +637,12 @@ gpu.func @test_dpas_vc(%a : vector<8x16xf16>, %b: vector<16x16xf16>) {
 
 // CHECK: gpu.func @test_dpas_simt(%[[arg0:.*]]: vector<8x1xf16>, %[[arg1:.*]]: vector<8x2xf16>)
 gpu.func @test_dpas_simt(%a : vector<8x1xf16>, %b: vector<8x2xf16>) {
-  // CHECK: xegpu.dpas %[[arg0]], %[[arg1]] {sg_map_a = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>,
-  // CHECK: sg_map_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>,
-  // CHECK: sg_map_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>} : vector<8x1xf16>, vector<8x2xf16> -> vector<8x1xf32>
-  %1 = xegpu.dpas %a, %b {sg_map_a = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>,
-                          sg_map_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [2, 1]>,
-                          sg_map_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>}
+  // CHECK: xegpu.dpas %[[arg0]], %[[arg1]] {a_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
+  // CHECK: b_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+  // CHECK: c_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<8x1xf16>, vector<8x2xf16> -> vector<8x1xf32>
+  %1 = xegpu.dpas %a, %b {a_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>,
+                          b_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+                          c_layout = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}
                           : vector<8x1xf16>, vector<8x2xf16> -> vector<8x1xf32>
   gpu.return
 }
@@ -704,4 +704,23 @@ gpu.func @fence() {
   gpu.return
 }
 
+// CHECK: gpu.func @test_create_nd_tdesc_wg_1(%[[arg0:.*]]: memref<24x32xf32>) {
+gpu.func @test_create_nd_tdesc_wg_1(%src: memref<24x32xf32>) {
+  // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [3, 2], sg_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [3, 2], sg_data = [8, 16], lane_layout = [1, 16], lane_data = [8, 1]>>
+  gpu.return
+}
+
+gpu.func @test_convert_layout(%a: vector<32x64xf16>) {
+  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>,
+                                resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  gpu.return
+}
+
+gpu.func @test_convert_layout_wg(%a: vector<32x64xf16>) {
+  %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>,
+                                resMap = #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 32], lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16>
+  gpu.return
+}
+
 }


        


More information about the Mlir-commits mailing list