[Mlir-commits] [mlir] [MLIR] Fix canonicalization pattern for 'shape.shape_of' (PR #134234)
Alaa Ali
llvmlistbot at llvm.org
Thu Apr 3 11:05:42 PDT 2025
https://github.com/alaa-ali updated https://github.com/llvm/llvm-project/pull/134234
>From 75de3afe3720c7c4f1c2ae4f484dfa9b9467925a Mon Sep 17 00:00:00 2001
From: Alaa Ali <alaaali at ah-alaaali-l.dhcp.mathworks.com>
Date: Thu, 3 Apr 2025 07:27:25 -0400
Subject: [PATCH 1/2] Fix canonicalization pattern for shape.shape_of
---
mlir/lib/Dialect/Shape/IR/Shape.cpp | 18 ++++++++++---
mlir/test/Dialect/Shape/canonicalize.mlir | 33 +++++++++++++++++++++--
2 files changed, 46 insertions(+), 5 deletions(-)
diff --git a/mlir/lib/Dialect/Shape/IR/Shape.cpp b/mlir/lib/Dialect/Shape/IR/Shape.cpp
index 10ba808cd26c2..b8eac7c86797b 100644
--- a/mlir/lib/Dialect/Shape/IR/Shape.cpp
+++ b/mlir/lib/Dialect/Shape/IR/Shape.cpp
@@ -1734,10 +1734,22 @@ struct ShapeOfFromReshape : public OpRewritePattern<shape::ShapeOfOp> {
// Operand 'shape' of 'tensor.reshape' may now be used as the result of
// 'shape.shape_of'. While its type is guaranteed to be compatible in well-
// formed IR, it may not be identical (dynamically vs statically shaped),
- // in which case it needs to be cast first.
+ // in which case it needs to be cast first using 'tensor.cast'.
+ // Additionally, it may not have identical element type (i32 vs index)
+ // while it has identical shaped type (dynamic vs static), in which case it needs
+ // to be cast first using 'arith.index_cast'.
+ // Note: 'shape.shape_of' op result must be shape or extent tensor.
Value shape = tensorReshapeOp.getShape();
- if (op.getType() != shape.getType())
- shape = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), shape);
+
+ auto opTensorType = llvm::dyn_cast<RankedTensorType>(op.getType());
+ auto shapeTensorType = llvm::dyn_cast<RankedTensorType>(shape.getType());
+
+ if (op.getType() != shape.getType()) {
+ if (opTensorType.getElementType() == shapeTensorType.getElementType())
+ shape = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), shape);
+ else if (!isExtentTensorType(shape.getType()))
+ shape = rewriter.create<arith::IndexCastOp>(op.getLoc(), op.getType(), shape);
+ }
rewriter.replaceOp(op, shape);
return success();
diff --git a/mlir/test/Dialect/Shape/canonicalize.mlir b/mlir/test/Dialect/Shape/canonicalize.mlir
index cf439c9c1b854..9b25468b3ab1e 100644
--- a/mlir/test/Dialect/Shape/canonicalize.mlir
+++ b/mlir/test/Dialect/Shape/canonicalize.mlir
@@ -1389,10 +1389,25 @@ func.func @shape_of_from_reshape(%arg0: tensor<*xf32>, %arg1: tensor<?xindex>) -
// -----
-// CHECK-LABEL: func @shape_of_from_reshape_compatible_types
+// Check statically shaped types, with element types i32 to index.
+// CHECK-LABEL: func @shape_of_from_reshape_compatible_types1
+// CHECK-SAME: %[[INPUT:.*]]: tensor<?x1xf32>
+// CHECK-SAME: %[[SHAPE:.*]]: tensor<3xi32>
+func.func @shape_of_from_reshape_compatible_types1(%arg0: tensor<?x1xf32>, %arg1: tensor<3xi32>) -> tensor<3xindex> {
+ // CHECK: %[[CAST_SHAPE:.*]] = arith.index_cast %[[SHAPE]] : tensor<3xi32> to tensor<3xindex>
+ // CHECK: return %[[CAST_SHAPE]] : tensor<3xindex>
+ %0 = tensor.reshape %arg0(%arg1) : (tensor<?x1xf32>, tensor<3xi32>) -> tensor<?x1x1xf32>
+ %1 = shape.shape_of %0 : tensor<?x1x1xf32> -> tensor<3xindex>
+ return %1 : tensor<3xindex>
+}
+
+// -----
+
+// Check similar element types, with statically shaped to dynamically shaped.
+// CHECK-LABEL: func @shape_of_from_reshape_compatible_types2
// CHECK-SAME: %[[INPUT:.*]]: tensor<*xf32>
// CHECK-SAME: %[[SHAPE:.*]]: tensor<5xindex>
-func.func @shape_of_from_reshape_compatible_types(%arg0: tensor<*xf32>, %arg1: tensor<5xindex>) -> tensor<?xindex> {
+func.func @shape_of_from_reshape_compatible_types2(%arg0: tensor<*xf32>, %arg1: tensor<5xindex>) -> tensor<?xindex> {
// CHECK: %[[CAST_SHAPE:.*]] = tensor.cast %[[SHAPE]] : tensor<5xindex> to tensor<?xindex>
// CHECK: return %[[CAST_SHAPE]] : tensor<?xindex>
%0 = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor<5xindex>) -> tensor<*xf32>
@@ -1402,6 +1417,20 @@ func.func @shape_of_from_reshape_compatible_types(%arg0: tensor<*xf32>, %arg1: t
// -----
+// Check similar element types, with dynamically shaped to statically shaped.
+// CHECK-LABEL: func @shape_of_from_reshape_compatible_types3
+// CHECK-SAME: %[[INPUT:.*]]: tensor<*xf32>
+// CHECK-SAME: %[[SHAPE:.*]]: tensor<?xindex>
+func.func @shape_of_from_reshape_compatible_types3(%arg0: tensor<*xf32>, %arg1: tensor<?xindex>) -> tensor<5xindex> {
+ // CHECK: %[[CAST_SHAPE:.*]] = tensor.cast %[[SHAPE]] : tensor<?xindex> to tensor<5xindex>
+ // CHECK: return %[[CAST_SHAPE]] : tensor<5xindex>
+ %0 = tensor.reshape %arg0(%arg1) : (tensor<*xf32>, tensor<?xindex>) -> tensor<*xf32>
+ %1 = shape.shape_of %0 : tensor<*xf32> -> tensor<5xindex>
+ return %1 : tensor<5xindex>
+}
+
+// -----
+
// CHECK-LABEL: func @shape_of_from_reshape_nofold
// CHECK-SAME: %[[INPUT:.*]]: tensor<*xf32>
// CHECK-SAME: %[[SHAPE:.*]]: tensor<?xindex>
>From 394735f79035ae8586521302b1b89fc99462d26d Mon Sep 17 00:00:00 2001
From: Alaa Ali <alaaali at ah-alaaali-l.dhcp.mathworks.com>
Date: Thu, 3 Apr 2025 08:34:15 -0400
Subject: [PATCH 2/2] dyn_cast check
---
mlir/lib/Dialect/Shape/IR/Shape.cpp | 8 +++++---
1 file changed, 5 insertions(+), 3 deletions(-)
diff --git a/mlir/lib/Dialect/Shape/IR/Shape.cpp b/mlir/lib/Dialect/Shape/IR/Shape.cpp
index b8eac7c86797b..f9302256eefe2 100644
--- a/mlir/lib/Dialect/Shape/IR/Shape.cpp
+++ b/mlir/lib/Dialect/Shape/IR/Shape.cpp
@@ -1741,11 +1741,13 @@ struct ShapeOfFromReshape : public OpRewritePattern<shape::ShapeOfOp> {
// Note: 'shape.shape_of' op result must be shape or extent tensor.
Value shape = tensorReshapeOp.getShape();
- auto opTensorType = llvm::dyn_cast<RankedTensorType>(op.getType());
- auto shapeTensorType = llvm::dyn_cast<RankedTensorType>(shape.getType());
+ auto opTensorTy = llvm::dyn_cast<RankedTensorType>(op.getType());
+ auto shapeTensorTy = llvm::dyn_cast<RankedTensorType>(shape.getType());
+ if (!opTensorTy || !shapeTensorTy)
+ return failure();
if (op.getType() != shape.getType()) {
- if (opTensorType.getElementType() == shapeTensorType.getElementType())
+ if (opTensorTy.getElementType() == shapeTensorTy.getElementType())
shape = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), shape);
else if (!isExtentTensorType(shape.getType()))
shape = rewriter.create<arith::IndexCastOp>(op.getLoc(), op.getType(), shape);
More information about the Mlir-commits
mailing list