[Mlir-commits] [mlir] a1bc979 - [mlir][Bufferization] Do not have read semantics for destination of `tensor.parallel_insert_slice`. (#134169)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Apr 3 09:47:39 PDT 2025


Author: MaheshRavishankar
Date: 2025-04-03T09:47:36-07:00
New Revision: a1bc979aa854c600e64e7500f1b79cd1d2655eb4

URL: https://github.com/llvm/llvm-project/commit/a1bc979aa854c600e64e7500f1b79cd1d2655eb4
DIFF: https://github.com/llvm/llvm-project/commit/a1bc979aa854c600e64e7500f1b79cd1d2655eb4.diff

LOG: [mlir][Bufferization] Do not have read semantics for destination of `tensor.parallel_insert_slice`. (#134169)

`tensor.insert_slice` needs to have read semantics on its destination
operand. Since it has a return value, its semantics are

- Copy dest to result
- Copy source to subview of destination.

`tensor.parallel_insert_slice` though has no result. So it does not need
to have read semantics. The op description
[here](https://github.com/llvm/llvm-project/blob/a3ac318e5f8668ec5b79dd86639881dfb2e88b69/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td#L1524)
also says that it is expected to lower to a `memref.subview`, that does
not have read semantics on the destination (its just a view).

This patch drops the read semantics for destination of
`tensor.parallel_insert_slice` but also makes the `shared_outs` operands
of `scf.forall` have read semantics. Earlier it would rely indirectly on
read semantics of destination operand of `tensor.parallel_insert_slice`
to propagate the read semantics for `shared_outs`. Now that is specified
more directly.

Fixes #133964

---------

Signed-off-by: MaheshRavishankar <mahesh.ravishankar at gmail.com>

Added: 
    

Modified: 
    mlir/lib/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.cpp
    mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
    mlir/test/Dialect/SCF/one-shot-bufferize.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.cpp
index f48d2a2df9c3c..cf62ee8bc45b5 100644
--- a/mlir/lib/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -1186,18 +1186,6 @@ struct YieldOpInterface
   }
 };
 
-/// Return `true` if the given loop may have 0 iterations.
-bool mayHaveZeroIterations(scf::ForallOp forallOp) {
-  for (auto [lb, ub] : llvm::zip(forallOp.getMixedLowerBound(),
-                                 forallOp.getMixedUpperBound())) {
-    std::optional<int64_t> lbConst = getConstantIntValue(lb);
-    std::optional<int64_t> ubConst = getConstantIntValue(ub);
-    if (!lbConst.has_value() || !ubConst.has_value() || *lbConst >= *ubConst)
-      return true;
-  }
-  return false;
-}
-
 /// Bufferization of ForallOp. This also bufferizes the terminator of the
 /// region. There are op interfaces for the terminators (InParallelOp
 /// and ParallelInsertSliceOp), but these are only used during analysis. Not
@@ -1207,17 +1195,11 @@ struct ForallOpInterface
                                                     ForallOp> {
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
-    auto forallOp = cast<ForallOp>(op);
-
-    // If the loop has zero iterations, the results of the op are their
-    // corresponding shared_outs, meaning that the shared_outs bufferize to a
-    // read.
-    if (mayHaveZeroIterations(forallOp))
-      return true;
-
-    // scf::ForallOp alone doesn't bufferize to a memory read, one of the
-    // uses of its matching bbArg may.
-    return state.isValueRead(forallOp.getTiedBlockArgument(&opOperand));
+    // All tensor operands to `scf.forall` are `shared_outs` and all
+    // shared outs are assumed to be read by the loop. This does not
+    // account for the case where the entire value is over-written,
+    // but being conservative here.
+    return true;
   }
 
   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,

diff  --git a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
index 4ac6eca586961..31014172a9555 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -930,8 +930,7 @@ struct ParallelInsertSliceOpInterface
 
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
-    return insertSliceOpRequiresRead(cast<tensor::ParallelInsertSliceOp>(op),
-                                     opOperand);
+    return opOperand == cast<ParallelInsertSliceOp>(op).getSourceMutable();
   }
 
   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,

diff  --git a/mlir/test/Dialect/SCF/one-shot-bufferize.mlir b/mlir/test/Dialect/SCF/one-shot-bufferize.mlir
index bb9f7dfdba83f..a1067ec3ba05f 100644
--- a/mlir/test/Dialect/SCF/one-shot-bufferize.mlir
+++ b/mlir/test/Dialect/SCF/one-shot-bufferize.mlir
@@ -946,3 +946,38 @@ func.func @index_switch(%pred: index, %b: tensor<5xf32>, %c: tensor<5xf32>) -> t
   // CHECK: return %[[r]]
   return %0 : tensor<5xf32>
 }
+
+// -----
+
+// See Issue https://github.com/llvm/llvm-project/issues/133964 . Checks that
+// tensor.parallel_insert_slice dest operand does not have read semantics.
+func.func @check_scfforall_inplace_bufferizer(%arg0 : tensor<?x?xf32>,
+    %arg1 : tensor<?x?xf32>,
+    %arg2 : tensor<?xf32> {bufferization.writable = true}) ->  tensor<?xf32> {
+  %c0 = arith.constant 0 : index
+  %c1 = arith.constant 1 : index
+  %d0 = tensor.dim %arg2, %c0 : tensor<?xf32>
+  %d1 = tensor.dim %arg1, %c1 : tensor<?x?xf32>
+  %0 = scf.forall (%arg3) in (%c1) shared_outs(%arg4 = %arg2) -> (tensor<?xf32>) {
+    %1 = tensor.extract_slice %arg0[0, 0][%d0, %d1][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+    %2 = tensor.extract_slice %arg1[0, 0][%d0, %d1][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
+    %3 = linalg.generic {
+        indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
+                         affine_map<(d0, d1) -> (d0, d1)>,
+                         affine_map<(d0, d1) -> (d0)>],
+        iterator_types = ["parallel", "reduction"]}
+        ins(%1, %2 : tensor<?x?xf32>, tensor<?x?xf32>)
+        outs(%arg4 : tensor<?xf32>) {
+      ^bb0(%b0 : f32, %b1: f32, %b2 : f32):
+        %4 = arith.mulf %b0, %b1 : f32
+        %5 = arith.addf %4, %b2 : f32
+        linalg.yield %5 : f32
+    } -> tensor<?xf32>
+    scf.forall.in_parallel {
+      tensor.parallel_insert_slice %3 into %arg4[0] [%d0] [1] : tensor<?xf32> into tensor<?xf32>
+    }
+  }
+  return %0 : tensor<?xf32>
+}
+// CHECK-LABEL: func @check_scfforall_inplace_bufferizer
+//   CHECK-NOT:   memref.alloc


        


More information about the Mlir-commits mailing list