[Mlir-commits] [mlir] [mlir][tensor] Extend the logic to generalise tensor.pack (PR #109815)
Han-Chung Wang
llvmlistbot at llvm.org
Mon Sep 30 14:57:00 PDT 2024
================
@@ -34,6 +36,59 @@ func.func @simple_pad_and_pack(%input: tensor<5x1xf32>, %output: tensor<1x1x8x2x
// CHECK-SAME: [0, 0, 0, 0] [1, 1, 8, 2] [1, 1, 1, 1]
// CHECK: return %[[INSERT]]
+/// Same as example above, but with dynamic tile size.
+
+func.func @simple_pad_and_pack_dynamic(%input: tensor<5x1xf32>, %output: tensor<1x1x?x2xf32>, %pad: f32, %high: index) -> tensor<1x1x?x2xf32> {
+ %0 = tensor.pack %input padding_value(%pad : f32) inner_dims_pos = [0, 1] inner_tiles = [%high, 2] into %output : tensor<5x1xf32> -> tensor<1x1x?x2xf32>
+ return %0 : tensor<1x1x?x2xf32>
+}
+
+// CHECK-LABEL: func.func @simple_pad_and_pack_dynamic(
+// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[PAD_VAL:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[HIGH_VAL:.*]]: index) -> tensor<1x1x?x2xf32> {
+// CHECK: %[[C2:.*]] = arith.constant 2 : index
+// CHECK: %[[PAD_HIGH:.*]] = affine.apply #[[$ATTR_0]](){{\[}}%[[HIGH_VAL]]]
+// CHECK: %[[PAD:.*]] = tensor.pad %[[SRC]] low[0, 0] high{{\[}}%[[PAD_HIGH]], 1] {
+// CHECK: tensor.yield %[[PAD_VAL]] : f32
+// CHECK-NOT: linalg.transpose
+// CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[VAL_10:.*]][0, 0] {{\[}}%[[HIGH_VAL]], 2] [1, 1] : tensor<?x2xf32> to tensor<?x2xf32>
+// CHECK: %[[DIM:.*]] = tensor.dim %[[DEST]], %[[C2]] : tensor<1x1x?x2xf32>
+// CHECK: %[[RES:.*]] = tensor.insert_slice %[[SLICE]] into %[[DEST]][0, 0, 0, 0] [1, 1, %[[DIM]], 2] [1, 1, 1, 1] : tensor<?x2xf32> into tensor<1x1x?x2xf32>
+// CHECK: return %[[RES]] : tensor<1x1x?x2xf32>
+
+/// Same as example above, but with scalable tile size.
+
+/// NOTE: For this example to make sense in practice, the "?" in the output shape
+/// should effectively be 8 * vector.vscale (and that's what tensor.dim
+/// below should return).
+
+func.func @simple_pad_and_pack_scalable(%input: tensor<5x1xf32>, %output: tensor<1x1x?x2xf32>, %pad: f32) -> tensor<1x1x?x2xf32> {
+ %c8 = arith.constant 8 : index
+ %vscale = vector.vscale
+ %c8_vscale = arith.muli %vscale, %c8 : index
+ %0 = tensor.pack %input padding_value(%pad : f32) inner_dims_pos = [0, 1] inner_tiles = [%c8_vscale, 2] into %output : tensor<5x1xf32> -> tensor<1x1x?x2xf32>
+ return %0 : tensor<1x1x?x2xf32>
+}
+
+// CHECK-LABEL: func.func @simple_pad_and_pack_scalable(
+// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]: tensor<5x1xf32>,
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]: tensor<1x1x?x2xf32>,
+// CHECK-SAME: %[[PAD_VAL:[a-zA-Z0-9]+]]: f32) -> tensor<1x1x?x2xf32> {
+// CHECK: %[[C2:.+]] = arith.constant 2 : index
+// CHECK: %[[C8:.+]] = arith.constant 8 : index
+// CHECK: %[[VS:.+]] = vector.vscale
----------------
hanhanW wrote:
nit: use CHECK-DAG which is more robust in this case.
https://github.com/llvm/llvm-project/pull/109815
More information about the Mlir-commits
mailing list