[Mlir-commits] [mlir] 6d11494 - [mlir][Linalg] Refine how broadcast dims are treated (#99015)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Sep 26 08:17:20 PDT 2024
Author: Andrzej WarzyĆski
Date: 2024-09-26T16:17:15+01:00
New Revision: 6d114944142ae5a1d0387fe40ffa9351b6f642aa
URL: https://github.com/llvm/llvm-project/commit/6d114944142ae5a1d0387fe40ffa9351b6f642aa
DIFF: https://github.com/llvm/llvm-project/commit/6d114944142ae5a1d0387fe40ffa9351b6f642aa.diff
LOG: [mlir][Linalg] Refine how broadcast dims are treated (#99015)
This PR fixes how broadcast dims (identified as "zero" results in
permutation maps) corresponding to a reduction iterator are vectorised
in the case of generic Ops. Here's an example:
```mlir
#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
func.func @generic_with_reduction_and_broadcast(%arg0: tensor<1x12x197x197xf32>) -> (tensor<1x12x197x1xf32>) {
%0 = tensor.empty() : tensor<1x12x197x1xf32>
%1 = linalg.generic {indexing_maps = [#map, #map1],
iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
ins(%arg0 : tensor<1x12x197x197xf32>)
outs(%0 : tensor<1x12x197x1xf32>) {
^bb0(%in: f32, %out: f32):
%818 = arith.addf %in, %out : f32
linalg.yield %818 : f32
} -> tensor<1x12x197x1xf32>
return %1 : tensor<1x12x197x1xf32>
}
```
This is a perfectly valid Generic Op, but currently triggers two issues
in the vectoriser. The root cause is this map:
```mlir
#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
```
This map triggers an assert in `reindexIndexingMap` - this hook
incorrectly assumes that every result in the input map is a `dim`
expression and that there are no constants. That's not the case in this
example. `reindexIndexingMap` is extended to allow maps like the one
above. For now, only constant "zero" results are allowed. This can be
extended in the future once a good motivating example is available.
Separately, the permutation map highlighted above "breaks" mask
calculation (ATM masks are always computed, even in the presence of
static shapes). When applying the following permutation:
```mlir
(d0, d1, d2, d3) -> (d0, d1, d2, 0)
```
to these canonical shapes (corresponding to the example above):
```
(1, 12, 197, 197)
```
we end up with the following error:
```bash
error: vector types must have positive constant sizes but got 1, 12, 197, 0
```
The error makes sense and indicates that we should update the
permutation map above to:
```
(d0, d1, d2, d3) -> (d0, d1, d2)
```
This would correctly give the following vector type:
```
vector<1x12x197xi1>
```
Fixes #97247
Added:
Modified:
mlir/include/mlir/IR/AffineMap.h
mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
mlir/lib/IR/AffineMap.cpp
mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
mlir/test/Dialect/Linalg/vectorization.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/IR/AffineMap.h b/mlir/include/mlir/IR/AffineMap.h
index 676da6d1764970..e30950bbf292d6 100644
--- a/mlir/include/mlir/IR/AffineMap.h
+++ b/mlir/include/mlir/IR/AffineMap.h
@@ -354,6 +354,24 @@ class AffineMap {
/// returns the resulting values. `this` must be symbol-less.
SmallVector<int64_t, 4> compose(ArrayRef<int64_t> values) const;
+ /// Returns the number of "zero" results (constant values == 0) in this map.
+ ///
+ /// Example:
+ /// * For `(d0, d1) -> (d0, d1, 0)` returns 1
+ /// * For `(d0, d1, d2) -> (d0, d1)` returns 0
+ /// * For `(d0, d1, d2) -> (d0, 0, d1, 0, d2)` returns 2
+ size_t getNumOfZeroResults() const;
+
+ /// Returns the AffineMap resulting from removing "zero" results (constant
+ /// values == 0) from this map.
+ ///
+ /// Example:
+ /// * For `(d0, d1) -> (d0, d1, 0)` returns `(d0, d1) -> (d0, d1)`
+ /// * For `(d0, d1, d2) -> (d0, d1)` returns `(d0, d1, d2) -> (d0, d1)`
+ /// * For `(d0, d1, d2) -> (d0, 0, d1, 0, d2)` returns
+ /// `(d0, d1, d2) -> (d0, d1, d2)`
+ AffineMap dropZeroResults();
+
/// Returns true if the AffineMap represents a subset (i.e. a projection) of a
/// symbol-less permutation map. `allowZeroInResults` allows projected
/// permutation maps with constant zero result expressions.
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index fa20001f661822..ca85f4b9b9c156 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -224,10 +224,10 @@ struct VectorizationState {
/// Masks an operation with the canonical vector mask if the operation needs
/// masking. Returns the masked operation or the original operation if masking
/// is not needed. If provided, the canonical mask for this operation is
- /// permuted using `maybeMaskingMap`.
+ /// permuted using `maybeIndexingMap`.
Operation *
maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp,
- std::optional<AffineMap> maybeMaskingMap = std::nullopt);
+ std::optional<AffineMap> maybeIndexingMap = std::nullopt);
private:
/// Initializes the iteration space static sizes using the Linalg op
@@ -422,16 +422,28 @@ Value VectorizationState::getOrCreateMaskFor(
return mask;
}
-/// Masks an operation with the canonical vector mask if the operation needs
-/// masking. Returns the masked operation or the original operation if masking
-/// is not needed. If provided, the canonical mask for this operation is
-/// permuted using `maybeMaskingMap`.
Operation *
VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask,
LinalgOp linalgOp,
- std::optional<AffineMap> maybeMaskingMap) {
+ std::optional<AffineMap> maybeIndexingMap) {
LDBG("Trying to mask: " << *opToMask << "\n");
+ std::optional<AffineMap> maybeMaskingMap = std::nullopt;
+ // The Operand indexing map may contain "zero" results, e.g.:
+ // (d0, d1, d2, d3) -> (d0, d1, d2, 0)
+ // When applied to canonical vector shapes like these:
+ // (1, 16, 16, 4)
+ // we would get:
+ // (1, 16, 16, 0)
+ // Instead, we should extract the following map permutation map for masking:
+ // (d0, d1, d2, d3) -> (d0, d1, d2)
+ // This way, the corresponding vector/mask type will be:
+ // vector<1x16x16xty>
+ // rather than:
+ // vector<1x16x16x0xty>
+ if (maybeIndexingMap)
+ maybeMaskingMap = maybeIndexingMap->dropZeroResults();
+
// Create or retrieve mask for this operation.
Value mask =
getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap);
@@ -476,7 +488,8 @@ static AffineMap reindexIndexingMap(AffineMap map) {
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
"expected projected permutation");
auto res = compressUnusedDims(map);
- assert(res.getNumDims() == res.getNumResults() &&
+ assert(res.getNumDims() ==
+ (res.getNumResults() - res.getNumOfZeroResults()) &&
"expected reindexed map with same number of dims and results");
return res;
}
@@ -1349,16 +1362,6 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
// permutation map and masking map.
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand);
- // Remove zeros from indexing map to use it as masking map.
- SmallVector<int64_t> zeroPos;
- auto results = indexingMap.getResults();
- for (const auto &result : llvm::enumerate(results)) {
- if (isa<AffineConstantExpr>(result.value())) {
- zeroPos.push_back(result.index());
- }
- }
- AffineMap maskingMap = indexingMap.dropResults(zeroPos);
-
AffineMap readMap;
VectorType readType;
Type elemType = getElementTypeOrSelf(opOperand->get());
@@ -1388,7 +1391,7 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
Operation *read = rewriter.create<vector::TransferReadOp>(
loc, readType, opOperand->get(), indices, readMap,
ArrayRef<bool>(inBounds));
- read = state.maskOperation(rewriter, read, linalgOp, maskingMap);
+ read = state.maskOperation(rewriter, read, linalgOp, indexingMap);
Value readValue = read->getResult(0);
// 3.b. If masked, set in-bounds to true. Masking guarantees that the access
diff --git a/mlir/lib/IR/AffineMap.cpp b/mlir/lib/IR/AffineMap.cpp
index 5cbd0b090492b4..ea3c0723b07759 100644
--- a/mlir/lib/IR/AffineMap.cpp
+++ b/mlir/lib/IR/AffineMap.cpp
@@ -592,6 +592,29 @@ SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
return res;
}
+size_t AffineMap::getNumOfZeroResults() const {
+ size_t res = 0;
+ for (auto expr : getResults()) {
+ auto constExpr = dyn_cast<AffineConstantExpr>(expr);
+ if (constExpr && constExpr.getValue() == 0)
+ res++;
+ }
+
+ return res;
+}
+
+AffineMap AffineMap::dropZeroResults() {
+ auto exprs = llvm::to_vector(getResults());
+ SmallVector<AffineExpr> newExprs;
+
+ for (auto expr : getResults()) {
+ auto constExpr = dyn_cast<AffineConstantExpr>(expr);
+ if (!constExpr || constExpr.getValue() != 0)
+ newExprs.push_back(expr);
+ }
+ return AffineMap::get(getNumDims(), getNumSymbols(), newExprs, getContext());
+}
+
bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
if (getNumSymbols() > 0)
return false;
diff --git a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
index 3404b73102e6a8..9a43d43cd9460a 100644
--- a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
@@ -1964,3 +1964,43 @@ module attributes {transform.with_named_sequence} {
// CHECK: %[[VAL_8:.*]] = vector.transpose %[[VAL_7]], [1, 0] : vector<1x4xf32> to vector<4x1xf32>
// CHECK: vector.transfer_write %[[VAL_8]], %{{.*}} {in_bounds = [true, true]} : vector<4x1xf32>, tensor<4x1xf32>
// CHECK: vector.transfer_write %[[VAL_7]], %{{.*}} {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
+
+// -----
+
+// Extracted from: https://github.com/llvm/llvm-project/issues/97247
+
+#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
+
+func.func @generic_with_reduction_and_broadcast(%arg0: tensor<1x12x197x197xf32>) -> (tensor<1x12x197x1xf32>) {
+ %0 = tensor.empty() : tensor<1x12x197x1xf32>
+ %1 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "reduction"]} ins(%arg0 : tensor<1x12x197x197xf32>) outs(%0 : tensor<1x12x197x1xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ %818 = arith.addf %in, %out : f32
+ linalg.yield %818 : f32
+ } -> tensor<1x12x197x1xf32>
+ return %1 : tensor<1x12x197x1xf32>
+}
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+ %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
+ transform.yield
+ }
+}
+
+// CHECK: #[[$ATTR_32:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
+
+// CHECK-LABEL: func.func @generic_with_reduction_and_broadcast(
+// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x12x197x197xf32>) -> tensor<1x12x197x1xf32> {
+// CHECK: %[[VAL_1:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_3:.*]] = tensor.empty() : tensor<1x12x197x1xf32>
+// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true, true, true, true]} : tensor<1x12x197x197xf32>, vector<1x12x197x197xf32>
+// CHECK: %[[VAL_5:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_32]]} : tensor<1x12x197x1xf32>, vector<1x12x197xf32>
+// CHECK: %[[VAL_6:.*]] = vector.multi_reduction <add>, %[[VAL_4]], %[[VAL_5]] [3] : vector<1x12x197x197xf32> to vector<1x12x197xf32>
+// CHECK: %[[VAL_7:.*]] = vector.broadcast %[[VAL_6]] : vector<1x12x197xf32> to vector<1x1x12x197xf32>
+// CHECK: %[[VAL_8:.*]] = vector.transpose %[[VAL_7]], [1, 2, 3, 0] : vector<1x1x12x197xf32> to vector<1x12x197x1xf32>
+// CHECK: %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_3]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]] {in_bounds = [true, true, true, true]} : vector<1x12x197x1xf32>, tensor<1x12x197x1xf32>
+// CHECK: return %[[VAL_9]] : tensor<1x12x197x1xf32>
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 783149971f0d60..0e2b2458d29cdb 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -147,6 +147,51 @@ module attributes {transform.with_named_sequence} {
// -----
+#map = affine_map<(d0, d1) -> (d0, d1)>
+#map1 = affine_map<(d0, d1) -> (d0, 0)>
+
+func.func @dynamic_generic_with_reduction_and_broadcast(%arg0: tensor<?x?xf32>, %init: tensor<?x?xf32>) -> (tensor<?x?xf32>) {
+ %0 = linalg.generic { indexing_maps = [#map, #map1],
+ iterator_types = ["parallel", "reduction"]}
+ ins(%arg0 : tensor<?x?xf32>)
+ outs(%init : tensor<?x?xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ %1 = arith.addf %in, %out : f32
+ linalg.yield %1 : f32
+ } -> tensor<?x?xf32>
+ return %0 : tensor<?x?xf32>
+}
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1) -> (d0)>
+
+// CHECK-LABEL: func.func @dynamic_generic_with_reduction_and_broadcast(
+// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf32>,
+// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
+// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?xf32>
+// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
+// CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32>
+// CHECK: %[[VAL_6:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_7:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[VAL_8:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]] : vector<4x4xi1>
+// CHECK: %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_7]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<4x4xf32> } : vector<4x4xi1> -> vector<4x4xf32>
+// CHECK: %[[VAL_10:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[VAL_11:.*]] = vector.create_mask %[[VAL_3]] : vector<4xi1>
+// CHECK: %[[VAL_12:.*]] = vector.mask %[[VAL_11]] { vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_10]] {in_bounds = [true], permutation_map = #[[$MAP]]} : tensor<?x?xf32>, vector<4xf32> } : vector<4xi1> -> vector<4xf32>
+// CHECK: %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.multi_reduction <add>, %[[VAL_9]], %[[VAL_12]] [1] : vector<4x4xf32> to vector<4xf32> } : vector<4x4xi1> -> vector<4xf32>
+// CHECK: %[[VAL_14:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_15:.*]] = vector.mask %[[VAL_11]] { vector.transfer_write %[[VAL_13]], %[[VAL_1]]{{\[}}%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true], permutation_map = #[[$MAP]]} : vector<4xf32>, tensor<?x?xf32> } : vector<4xi1> -> tensor<?x?xf32>
+// CHECK: return %[[VAL_15]] : tensor<?x?xf32>
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 vector_sizes [4, 4] : !transform.any_op
+ transform.yield
+ }
+}
+
+// -----
+
func.func @vectorize_dynamic_2d_transpose(%arg0: tensor<?x?xf32>,
%arg1: tensor<?x?xf32>,
%arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {
More information about the Mlir-commits
mailing list