[Mlir-commits] [mlir] 09e94d0 - Revert "[MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter definition. " (#109666)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Sep 23 07:32:43 PDT 2024
Author: Chao Chen
Date: 2024-09-23T09:32:37-05:00
New Revision: 09e94d09fd0f6ca7daac86f2c019473e0bd2f54e
URL: https://github.com/llvm/llvm-project/commit/09e94d09fd0f6ca7daac86f2c019473e0bd2f54e
DIFF: https://github.com/llvm/llvm-project/commit/09e94d09fd0f6ca7daac86f2c019473e0bd2f54e.diff
LOG: Revert "[MLIR][XeGPU] Updates XeGPU TensorDescAttr and Refine Gather/Scatter definition. " (#109666)
Reverts llvm/llvm-project#109144
Added:
Modified:
mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
mlir/test/Dialect/XeGPU/XeGPUOps.mlir
mlir/test/Dialect/XeGPU/invalid.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index 26eec0d4f2082a..f3ca09a6a68ea8 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -19,18 +19,12 @@ class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [],
let mnemonic = attrMnemonic;
}
-class XeGPU_TensorDescAttr<string name, string attrMnemonic, list<Trait> traits = [],
- string baseCppClass = "::mlir::Attribute">
- : XeGPUAttr<name, attrMnemonic, traits, baseCppClass> {
- let assemblyFormat = "`<` struct(params) `>`";
-}
-
-def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_tdesc_attr"> {
+def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> {
let summary = [{a composite attribute for `TensorDescType`}];
- let description = [{`BlockTensorDesc` (or `block_tdesc_attr`) is a composite
+ let description = [{`TensorDescAttr` (or `tdesc_attr`) is a composite
attribute defined for `TensorDescType` for describing following
properties of a `TensorDesc`.
- 1. `memory_space`: It describes where the data block described by the
+ 1. `memory_scope`: It describes where the data block described by the
TensorDesc is located, `Global` device memory or `Shared` local memory.
It is default to `Global`.
2. `array_length`: It describes how many horizontally consecutive blocks
@@ -39,63 +33,43 @@ def XeGPU_BlockTensorDescAttr: XeGPU_TensorDescAttr<"BlockTensorDesc", "block_td
8x32. Its default value is 1.
3. `boundary_check`: It is used to indicates the hardware whether to do
out-of-boundary check. The default value is true.
+ 4. `scattered`: It is used to
diff erenciate TensorDescs created from
+ `create_nd_tdesc` vs from `create_tdesc`.
}];
let parameters = (ins
- OptionalParameter<"MemorySpaceAttr">: $memory_space,
+ OptionalParameter<"MemoryScopeAttr">: $memory_scope,
OptionalParameter<"IntegerAttr", "1">: $array_length,
- OptionalParameter<"BoolAttr", "true">: $boundary_check
+ OptionalParameter<"BoolAttr", "true">: $boundary_check,
+ OptionalParameter<"BoolAttr", "false">: $scattered
);
let builders = [
AttrBuilder<(ins
- CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
+ CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope,
CArg<"int", "1">:$array_length,
- CArg<"bool", "true">: $boundary_check
+ CArg<"bool", "true">: $boundary_check,
+ CArg<"bool", "false">: $scattered
)>
];
+ let assemblyFormat = "`<` struct(params) `>`";
}
-def XeGPU_ScatterTensorDescAttr: XeGPU_TensorDescAttr<"ScatterTensorDesc", "scatter_tdesc_attr"> {
- let summary = [{a composite attribute for `TensorDescType`}];
- let description = [{`ScatterTensorDesc` (or `scatter_tdesc_attr`) is a composite
- attribute defined for `TensorDescType` for describing following
- properties of a `TensorDesc`.
- 1. `memory_space`: It describes where the data block described by the
- TensorDesc is located, `Global` device memory or `Shared` local memory.
- It is default to `Global`.
- 2. `chunk_size`: indicates number of continious elements accessed for each
- offset, default is 1. It is used with `scattered` attr only.
- }];
-
- let parameters = (ins
- OptionalParameter<"MemorySpaceAttr">: $memory_space,
- OptionalParameter<"IntegerAttr", "1">: $chunk_size
- );
-
- let builders = [
- AttrBuilder<(ins
- CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space,
- CArg<"int", "1">: $chunk_size
- )>
- ];
- }
-
//===----------------------------------------------------------------------===//
// XeGPU Memory Scope Enums.
//===----------------------------------------------------------------------===//
-def XeGPU_MemorySpaceGlobal: I32EnumAttrCase<"Global", 0, "global">;
-def XeGPU_MemorySpaceShared: I32EnumAttrCase<"SLM", 3, "slm">;
-def XeGPU_MemorySpace: I32EnumAttr<"MemorySpace",
+def XeGPU_MemoryScopeGlobal: I32EnumAttrCase<"Global", 0, "global">;
+def XeGPU_MemoryScopeShared: I32EnumAttrCase<"SLM", 1, "slm">;
+def XeGPU_MemoryScope: I32EnumAttr<"MemoryScope",
"The address space of the memory the tensor descritor is created for",
- [XeGPU_MemorySpaceGlobal, XeGPU_MemorySpaceShared]> {
+ [XeGPU_MemoryScopeGlobal, XeGPU_MemoryScopeShared]> {
let genSpecializedAttr = 0;
let cppNamespace = "::mlir::xegpu";
}
-def XeGPU_MemorySpaceAttr:
- EnumAttr<XeGPU_Dialect, XeGPU_MemorySpace, "memory_space"> {
+def XeGPU_MemoryScopeAttr:
+ EnumAttr<XeGPU_Dialect, XeGPU_MemoryScope, "memory_scope"> {
let summary = [{Describe the location of data described by a `TensorDesc`:
Global device memory (`Global`) or Shared local memory (`SLM`).}];
let assemblyFormat = "$value";
@@ -142,4 +116,4 @@ def XeGPU_FenceScopeAttr:
let assemblyFormat = "$value";
}
-#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
\ No newline at end of file
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index e24a056de2caf3..c32c7541c39791 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -218,23 +218,6 @@ def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, ViewLikeOpInterface
static unsigned getOffsetSizeAndStrideStartOperandIndex() { return 1; }
mlir::Value getViewSource() { return getSource(); }
-
- unsigned getSourceMemorySpace() {
- auto srcTy = getSourceType();
- if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
- auto attr = memrefTy.getMemorySpace();
- if (attr) {
- if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr)) {
- return static_cast<unsigned>(intAttr.getInt());
- }
- if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
- return static_cast<unsigned>(memSpaceAttr.getValue());
- }
- }
- // take global as default memory scope.
- return static_cast<unsigned>(MemorySpace::Global);
- }
-
}];
}
@@ -428,10 +411,8 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
implying each element in the array corresponds to a work-item (SIMT lane)
in the subgroup.
-
- The first dimension of the result TensorDesc corresponds to work-items, so it should
- match the dimension of offsets. It may also has a second dimension corresponding to
- the chunk_size if the chunk size is larger than 1.
+ * chunk_size: [optional attribute] indicates number of continious
+ elements accessed for each offset, default is 1.
Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
```mlir
@@ -443,22 +424,29 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 16, 32, 64] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>
+ %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
```
Example 3. It is similar to Example 2, but there is some overlaps among workitems.
It accesses: a[0:7], a[4:11], a[8:15], a[12:19]
```mlir
%0 = memref.alloc() : memref<1024xf32>
- %1 = xegpu.create_tdesc %0[0, 4, 8, 12] : memref<1024xf32> -> TensorDesc<4x8xf32, chunk_size = 8>>
+ %1 = xegpu.create_tdesc %0[0, 4, 8, 12] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
```
}];
let arguments = (ins XeGPU_BaseAddrType: $source,
Variadic<Index>: $offsets,
- DenseI64ArrayAttr: $const_offsets);
+ DenseI64ArrayAttr: $const_offsets,
+ DefaultValuedAttr<I64Attr, "1">: $chunk_size);
let results = (outs XeGPU_TensorDesc:$TensorDesc);
+ let builders = [
+ OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source,
+ "llvm::ArrayRef<OpFoldResult>": $offsets,
+ CArg<"uint32_t", "1"> : $chunk_size)>,
+ ];
+
let assemblyFormat = [{
$source
custom<DynamicIndexList>($offsets, $const_offsets)
@@ -485,22 +473,6 @@ def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
assert(idx < getNumOffsets() && "Invalid out of bound access.");
return getMixedOffsets()[idx];
}
-
- unsigned getSourceMemorySpace() {
- auto srcTy = getSource().getType();
- if (auto memrefTy = llvm::dyn_cast<mlir::MemRefType>(srcTy)) {
- auto attr = memrefTy.getMemorySpace();
- if (attr) {
- if (auto intAttr = llvm::dyn_cast<mlir::IntegerAttr>(attr))
- return static_cast<unsigned>(intAttr.getInt());
- if (auto memSpaceAttr = llvm::dyn_cast<MemorySpaceAttr>(attr))
- return static_cast<unsigned>(memSpaceAttr.getValue());
- }
- }
- // take global as default memory scope.
- return static_cast<unsigned>(MemorySpace::Global);
- }
-
}];
let hasVerifier = 1;
@@ -548,31 +520,28 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
let description = [{ It (aka. load) load data per each work-item. The output
describes the data being loaded at the subgroup level, so its size is
- consistent with the number of work-items in a subgroup. When the chunk size
- is larger than 2, the output vector is a 2D vector, with dim-1 correspoding
- to work-items, and dim-0 corresponding to the chunk_size loaded by each work-item.
- Specially, there is a transpose effect on the result (as compared to the TensorDesc)
- due to the hardware implementation. Therefore, a transpose attribute is introduced
- on purpose, making sure users are aware of this implicit transformation.
+ consistent with the number of work-items in a subgroup. When `chunk_size_per_lane`
+ attribute is larger than 1 in TensorDesc, the output vector will be 2D vector,
+ with dim-1 correspoding to the chunk size.
The mask operand masks out memory access so that it is safe to pass out-of-boundary
addresses/offsets as long as they are masked. It applies to slots of SIMD lanes.
Example:
```mlir
- %2 = xegpu.load %1, %0 {transpose,
+ %2 = xegpu.load %1, %0 {transpose = [1, 0],
l1_hint = #xegpu.cache_hint<cached>,
l2_hint = #xegpu.cache_hint<uncached>,
l3_hint = #xegpu.cache_hint<uncached>}
- : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<memory_space=global>>,
- vector<16xi1> -> vector<16xf32>
+ : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered=true>>, vector<16xi1>
+ -> vector<16xf32>
```
}];
let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
XeGPU_MaskType: $mask,
- OptionalAttr<UnitAttr>: $transpose,
+ OptionalAttr<DenseI64ArrayAttr>: $transpose,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -604,15 +573,11 @@ def XeGPU_LoadGatherOp : XeGPU_Op<"load", [AllRanksMatch<["value", "TensorDesc"]
let hasVerifier = 1;
}
-def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "TensorDesc"]>,
- AllElementTypesMatch<["value", "TensorDesc"]>]> {
+def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllShapesMatch<["value", "TensorDesc"]>,
+ AllElementTypesMatch<["value", "TensorDesc"]>]> {
let summary = "store data to scattered memory locations.";
- let description = [{ It (aka. store) stores data to scattered memory locations. The value is
- typically a 1D vector. But when the chunk size of the TensorDesc is larger than 1, it will be
- a 2D vector instead. For the later case, dim-1 of the value correspods to the simd lanes
- and the dim-0 of the value corresponds to the chunk_size stored per lane. So `store_scatter`
- has transpose effect, which is similar to `load_gather`. Therefore, a transpose attribute is
- introduced on purpose, making sure users are aware of this implicit transformation.
+ let description = [{ It (aka. store) stores data to scattered memory locations.
+ It has similar semantic to `load_gather`.
Example:
```mlir
@@ -627,7 +592,6 @@ def XeGPU_StoreScatterOp : XeGPU_Op<"store", [AllElementCountsMatch<["value", "T
XeGPU_ValueType: $value,
XeGPU_TensorDesc: $TensorDesc,
XeGPU_MaskType: $mask,
- OptionalAttr<UnitAttr>: $transpose,
OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
@@ -759,7 +723,7 @@ def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs", "rhs"]>]
def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure,
AllElementTypesMatch<["tensorDesc", "value", "result"]>,
- AllShapesMatch<["tensorDesc", "value", "result"]>]> {
+ AllShapesMatch<["tensorDesc", "mask", "value", "result"]>]> {
let summary = "Atomic ready-modify-write operation on the TensorDesc. ";
let description = [{
@@ -844,7 +808,7 @@ def XeGPU_FenceOp: XeGPU_Op<"fence", []> {
2. `Fence_scope` describes the scope of fence. "Workgroup" means that the scope would be
within each workgroup. "GPU" means the scope would be across workgroups within the GPU.
}];
- let arguments = (ins XeGPU_MemorySpaceAttr: $memory_kind,
+ let arguments = (ins XeGPU_MemoryScopeAttr: $memory_kind,
XeGPU_FenceScopeAttr: $fence_scope);
let assemblyFormat = [{`memory_kind` `=` `` $memory_kind `,` `fence_scope` `=` `` $fence_scope attr-dict}];
let extraClassDeclaration = extraBaseClassDeclaration;
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index 0ce1211664b5ba..9f101a71697b56 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -48,7 +48,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
Similar to the builtin tensor, it also provides an optinal attribute to encoding
the following information via the TensorDescAttr object:
- * memory_space (xegpu::MemorySpace): [optional] where the data is located,
+ * memory_scope (xegpu::MemoryScope): [optional] where the data is located,
global memory or shared memory. It is default to Global.
* array_length (int): [optional] The number of contiguous blocks with size as `shape`,
that will be loaded by block load at a time. It is default to 1.
@@ -63,7 +63,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
element-type ::= float-type | integer-type | index-type
dim-list := (static-dim-list `x`)?
static-dim-list ::= decimal-literal `x` decimal-literal
- attr-list = (, memory_space = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)?
+ attr-list = (, memory_scope = value)? (, arr_len = value)? (, boundary_check = value)? (, scattered = value)?
```
Examples:
@@ -76,7 +76,7 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
xegpu.tensor_desc<8x16xf32>
// A TensorDesc with 8x16 f32 elements for a memory region in shared memory space.
- xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_space = slm>>
+ xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
```
}];
@@ -88,14 +88,11 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
TypeBuilderWithInferredContext<(ins
"llvm::ArrayRef<int64_t>": $shape,
"mlir::Type": $elementType,
+ CArg<"bool", "false">: $scattered,
CArg<"int", "1">: $array_length,
- CArg<"bool", "true">: $boundary_check,
- CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>,
- TypeBuilderWithInferredContext<(ins
- "llvm::ArrayRef<int64_t>": $shape,
- "mlir::Type": $elementType,
- CArg<"int", "1">: $chunk_size,
- CArg<"xegpu::MemorySpace", "xegpu::MemorySpace::Global">:$memory_space)>
+ CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope,
+ CArg<"bool", "true">: $boundary_check
+ )>
];
let extraClassDeclaration = [{
@@ -113,58 +110,40 @@ def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
return llvm::cast<TensorDescType>(cloneWith(getShape(), elementType));
}
- BlockTensorDescAttr getEncodingAsBlockTensorDescAttr() const {
- return llvm::dyn_cast_if_present<BlockTensorDescAttr>(getEncoding());
+ TensorDescAttr getEncodingAsTensorDescAttr() const {
+ return llvm::dyn_cast_if_present<TensorDescAttr>(getEncoding());
}
- ScatterTensorDescAttr getEncodingAsScatterTensorDescAttr() const {
- return llvm::dyn_cast_if_present<ScatterTensorDescAttr>(getEncoding());
- }
-
- xegpu::MemorySpace getMemorySpace() const {
- auto block_attr = getEncodingAsBlockTensorDescAttr();
- if (block_attr && block_attr.getMemorySpace())
- return block_attr.getMemorySpace().getValue();
-
- auto scatter_attr = getEncodingAsScatterTensorDescAttr();
- if (scatter_attr && scatter_attr.getMemorySpace())
- return scatter_attr.getMemorySpace().getValue();
-
+ xegpu::MemoryScope getMemoryScope() const {
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getMemoryScope())
+ return attr.getMemoryScope().getValue();
// return default value
- return MemorySpace::Global;
+ return MemoryScope::Global;
}
int getArrayLength() {
- auto attr = getEncoding();
- auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr);
- assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr.");
- if (block_attr && block_attr.getArrayLength())
- return block_attr.getArrayLength().getInt();
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getArrayLength())
+ return attr.getArrayLength().getInt();
// return default value
return 1;
}
bool getBoundaryCheck() {
- auto attr = getEncoding();
- auto block_attr = mlir::dyn_cast_if_present<BlockTensorDescAttr>(attr);
- assert((!attr || block_attr) && "invalid on non BlockTensorDescAttr.");
- if (block_attr && block_attr.getBoundaryCheck())
- return block_attr.getBoundaryCheck().getValue();
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getBoundaryCheck())
+ return attr.getBoundaryCheck().getValue();
// return default value
return true;
}
- bool isScattered() {
- return bool(getEncodingAsScatterTensorDescAttr());
- }
-
- int getChunkSize() {
- auto attr = getEncoding();
- auto scatter_attr = mlir::dyn_cast_if_present<ScatterTensorDescAttr>(attr);
- assert((!attr || scatter_attr) && "invalid on non ScatterTensorDescAttr.");
- if (scatter_attr && scatter_attr.getChunkSize())
- return scatter_attr.getChunkSize().getInt();
- return 1;
+ bool getScattered() {
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getScattered())
+ return attr.getScattered().getValue();
+ // return default value
+ return false;
}
}];
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
index 1dfbaed454c193..24719fe748fe4f 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -30,35 +30,23 @@ void XeGPUDialect::initialize() {
}
//===----------------------------------------------------------------------===//
-// XeGPU_BlockTensorDescAttr
+// XeGPU_TensorDescAttr
//===----------------------------------------------------------------------===//
-BlockTensorDescAttr BlockTensorDescAttr::get(mlir::MLIRContext *context,
- xegpu::MemorySpace memory_space,
- int array_length,
- bool boundary_check) {
- auto scopeAttr = MemorySpaceAttr::get(context, memory_space);
+TensorDescAttr TensorDescAttr::get(mlir::MLIRContext *context,
+ xegpu::MemoryScope memory_scope,
+ int array_length, bool boundary_check,
+ bool scattered) {
+ auto scopeAttr = MemoryScopeAttr::get(context, memory_scope);
auto lengthAttr =
IntegerAttr::get(IntegerType::get(context, 64), array_length);
auto boundaryAttr = BoolAttr::get(context, boundary_check);
- return Base::get(context, scopeAttr, lengthAttr, boundaryAttr);
-}
-
-//===----------------------------------------------------------------------===//
-// XeGPU_ScatterTensorDescAttr
-//===----------------------------------------------------------------------===//
-ScatterTensorDescAttr
-ScatterTensorDescAttr::get(mlir::MLIRContext *context,
- xegpu::MemorySpace memory_space, int chunk_size) {
- auto scopeAttr = MemorySpaceAttr::get(context, memory_space);
- auto chunkSizeAttr =
- IntegerAttr::get(IntegerType::get(context, 64), chunk_size);
- return Base::get(context, scopeAttr, chunkSizeAttr);
+ auto scatteredAttr = BoolAttr::get(context, scattered);
+ return Base::get(context, scopeAttr, lengthAttr, boundaryAttr, scatteredAttr);
}
//===----------------------------------------------------------------------===//
// XeGPU_TensorDescType
//===----------------------------------------------------------------------===//
-
mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) {
llvm::SmallVector<int64_t> shape;
mlir::Type elementType;
@@ -120,20 +108,12 @@ void TensorDescType::print(::mlir::AsmPrinter &printer) const {
}
TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
- mlir::Type elementType, int array_length,
- bool boundary_check,
- MemorySpace memory_space) {
- auto context = elementType.getContext();
- auto attr = BlockTensorDescAttr::get(context, memory_space, array_length,
- boundary_check);
- return Base::get(context, shape, elementType, attr);
-}
-
-TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
- mlir::Type elementType, int chunk_size,
- MemorySpace memory_space) {
+ mlir::Type elementType, bool scattered,
+ int array_length, MemoryScope memory_scope,
+ bool boundary_check) {
auto context = elementType.getContext();
- auto attr = ScatterTensorDescAttr::get(context, memory_space, chunk_size);
+ auto attr = TensorDescAttr::get(context, memory_scope, array_length,
+ boundary_check, scattered);
return Base::get(context, shape, elementType, attr);
}
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
index 7f0c8b72b3c252..9c517337a3aa57 100644
--- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -124,17 +124,6 @@ LogicalResult CreateNdDescOp::verify() {
bool invalidRank = false;
bool invalidElemTy = false;
- // Memory space of created TensorDesc should match with the source.
- // Both source and TensorDesc are considered for global memory by default,
- // if the memory scope attr is not specified. If source is an integer,
- // it is considered as ptr to global memory.
- auto srcMemorySpace = getSourceMemorySpace();
- auto tdescMemorySpace = static_cast<unsigned>(getType().getMemorySpace());
- if (srcMemorySpace != tdescMemorySpace)
- return emitOpError("Memory space mismatch.")
- << " Source: " << srcMemorySpace
- << ", TensorDesc: " << tdescMemorySpace;
-
// check source type matches the rank if it is a memref.
// It also should have the same ElementType as TensorDesc.
auto memrefTy = dyn_cast<MemRefType>(getSourceType());
@@ -163,13 +152,9 @@ LogicalResult CreateNdDescOp::verify() {
return emitOpError("TensorDesc should have the same element "
"type with the source if it is a memref.\n");
- if (getType().isScattered())
+ if (getType().getScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
- if (getType().getRank() == 2 &&
- tdescMemorySpace == static_cast<unsigned>(MemorySpace::SLM))
- return emitOpError("SLM is not supported for 2D Block TensorDesc.\n");
-
return success();
}
@@ -178,7 +163,7 @@ LogicalResult CreateNdDescOp::verify() {
//===----------------------------------------------------------------------===//
LogicalResult PrefetchNdOp::verify() {
auto tdescTy = getTensorDescType();
- if (tdescTy.isScattered())
+ if (tdescTy.getScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (!isReadHintOrNone(getL1HintAttr()))
@@ -203,7 +188,7 @@ LogicalResult LoadNdOp::verify() {
if (tdescTy.getRank() > 2)
return emitOpError("Expecting a 1D/2D TensorDesc.\n");
- if (tdescTy.isScattered())
+ if (tdescTy.getScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (!valueTy)
@@ -243,8 +228,8 @@ LogicalResult LoadNdOp::verify() {
tdescShape[axis] /= vnni_factor;
tdescShape.push_back(vnni_factor);
} else {
- emitWarning("Invalid Packed Attr. It is ignored (available for 2D "
- "TensorDesc only).");
+ return emitWarning("Invalid Packed Attr. It is ignored (available for 2D "
+ "TensorDesc only).");
}
}
@@ -271,7 +256,7 @@ LogicalResult StoreNdOp::verify() {
if (dstTy.getRank() > 2)
return emitOpError("Expecting a 1D/2D TensorDesc.\n");
- if (dstTy.isScattered())
+ if (dstTy.getScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
if (!valTy)
@@ -294,7 +279,7 @@ LogicalResult StoreNdOp::verify() {
//===----------------------------------------------------------------------===//
LogicalResult UpdateNdOffsetOp::verify() {
auto ty = getTensorDescType();
- if (ty.isScattered())
+ if (ty.getScattered())
return emitOpError("Expects a non-scattered TensorDesc.\n");
// number of offsets specified must match the rank of the tensor descriptor
@@ -307,55 +292,28 @@ LogicalResult UpdateNdOffsetOp::verify() {
//===----------------------------------------------------------------------===//
// XeGPU_CreateDescOp
//===----------------------------------------------------------------------===//
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+ TensorDescType TensorDesc, Value source,
+ llvm::ArrayRef<OpFoldResult> offsets,
+ uint32_t chunk_size) {
+ llvm::SmallVector<int64_t> staticOffsets;
+ llvm::SmallVector<Value> dynamicOffsets;
+ dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
+ build(builder, state, TensorDesc, source, dynamicOffsets, staticOffsets,
+ chunk_size);
+}
LogicalResult CreateDescOp::verify() {
auto tdescTy = getTensorDescType();
+ auto chunkSize = getChunkSize();
if (getRankOf(getSource()) > 1)
return emitOpError(
"Expecting the source is a 1D memref or pointer (uint64_t).");
- if (!tdescTy.isScattered())
+ if (!tdescTy.getScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
- // Memory space of created TensorDesc should match with the source.
- // Both source and TensorDesc are considered for global memory by default,
- // if the memory scope attr is not specified. If source is an integer,
- // it is considered as ptr to global memory.
- auto srcMemorySpace = getSourceMemorySpace();
- auto tdescMemorySpace = static_cast<unsigned>(tdescTy.getMemorySpace());
- if (srcMemorySpace != tdescMemorySpace)
- return emitOpError("Memory space mismatch.")
- << " Source: " << srcMemorySpace
- << ", TensorDesc: " << tdescMemorySpace;
-
- auto chunkSize = tdescTy.getChunkSize();
-
- // check chunk_size
- llvm::SmallVector<int64_t> supportedChunkSizes = {1, 2, 3, 4, 8,
- 16, 32, 64, 128, 256};
- if (!llvm::is_contained(supportedChunkSizes, chunkSize))
- return emitOpError("Invalid chunk_size. Supported values are 1, 2, 3, 4, "
- "8, 16, 32, 64, 128, or 256.");
-
- // check total size
- auto elemBits = tdescTy.getElementType().getIntOrFloatBitWidth();
- auto bitsPerLane = elemBits * chunkSize;
- if (chunkSize > 1 && bitsPerLane % 32) {
- // For 8-bit and 16-bit data, the hardware only supports chunk size of 1.
- // For 32-bit data, the hardware can support larger chunk size. So
- // we can bitcast 8-bit/16-bit data to 32-bit data for better performance.
- // But this requires the total size is 32 bit aligned to make the
- // optimization work.
- return emitOpError(
- "access size (chunk_size * sizeof(elemTy)) should be 32-bit aligned.");
- }
-
- auto lscConstraints = 512 * 8; // each access is upto 512 bytes.
- if (elemBits * tdescTy.getNumElements() > lscConstraints)
- return emitOpError("total access size (simd_lanes * chunk_size * "
- "sizeof(elemTy)) is upto 512 bytes.");
-
SmallVector<int64_t> shape({(int64_t)getNumOffsets()});
if (chunkSize != 1)
shape.push_back(chunkSize);
@@ -373,7 +331,7 @@ LogicalResult CreateDescOp::verify() {
//===----------------------------------------------------------------------===//
LogicalResult PrefetchOp::verify() {
auto tdescTy = getTensorDescType();
- if (!tdescTy.isScattered())
+ if (!tdescTy.getScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
if (!isReadHintOrNone(getL1HintAttr()))
@@ -396,7 +354,7 @@ LogicalResult LoadGatherOp::verify() {
auto maskTy = getMaskType();
auto valueTy = getValueType();
- if (!tdescTy.isScattered())
+ if (!tdescTy.getScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
if (!isReadHintOrNone(getL1HintAttr()))
@@ -421,10 +379,12 @@ LogicalResult LoadGatherOp::verify() {
if (tdescShape[0] != maskShape[0])
return emitOpError("dim-0 of the Mask and TensorDesc should be the same.");
- if (tdescTy.getRank() == 2) {
- if (!getTransposeAttr())
- return emitOpError("load_gather has to be transposed.");
- transpose({1, 0}, tdescShape);
+ if (getTransposeAttr()) {
+ auto trans = getTranspose().value();
+ if (tdescShape.size() < trans.size())
+ emitWarning("Invalid transpose attr. It is ignored.");
+ else
+ transpose(trans, tdescShape);
}
if (valueShape != tdescShape)
@@ -440,7 +400,7 @@ LogicalResult LoadGatherOp::verify() {
//===----------------------------------------------------------------------===//
LogicalResult StoreScatterOp::verify() {
auto tdescTy = getTensorDescType();
- if (!tdescTy.isScattered())
+ if (!tdescTy.getScattered())
return emitOpError("Expects a scattered TensorDesc.\n");
if (!isWriteHintOrNone(getL1HintAttr()))
@@ -453,24 +413,11 @@ LogicalResult StoreScatterOp::verify() {
return emitOpError("invlid l3_hint: ") << getL3HintAttr();
auto maskTy = getMaskType();
- auto valueTy = getValueType();
auto maskShape = getShapeOf(maskTy);
auto tdescShape = getShapeOf(tdescTy);
- auto valueShape = getShapeOf(valueTy);
if (tdescShape[0] != maskShape[0])
return emitOpError("dim-0 of the Mask and TensorDesc should be the same.");
- if (tdescTy.getRank() == 2) {
- if (!getTransposeAttr())
- return emitOpError("load_gather has to be transposed.");
- transpose({1, 0}, tdescShape);
- }
-
- if (valueShape != tdescShape)
- return emitOpError("Unexpected value shape")
- << "(Expected shape: " << makeString(tdescShape)
- << ", Given shape: " << makeString(valueShape) << ").\n";
-
return success();
}
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
index c1126efb6046dc..35d44cf56a239b 100644
--- a/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
+++ b/mlir/test/Dialect/XeGPU/XeGPUOps.mlir
@@ -24,8 +24,8 @@ gpu.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : ind
// CHECK: gpu.func @test_create_nd_tdesc_vc_3(%[[arg0:.*]]: memref<24x32xf32>) {
gpu.func @test_create_nd_tdesc_vc_3(%src: memref<24x32xf32>) {
- // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2 : i64>
- %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.block_tdesc_attr<array_length = 2>>
+ // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr<array_length = 2 : i64>
+ %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<24x16xf32, #xegpu.tdesc_attr<array_length = 2>>
gpu.return
}
@@ -36,13 +36,6 @@ gpu.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32>) {
gpu.return
}
-// CHECK: gpu.func @test_create_nd_tdesc_vc_5(%[[arg0:.*]]: memref<2x24x32xf32, 3>) {
-gpu.func @test_create_nd_tdesc_vc_5(%src: memref<2x24x32xf32, 3>) {
- // CHECK: %[[REG:.*]] = xegpu.create_nd_tdesc %arg0[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>>
- %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32, #xegpu.block_tdesc_attr<memory_space = slm>>
- gpu.return
-}
-
// CHECK: gpu.func @test_prefetch_nd_vc(%[[arg0:.*]]: memref<24x32xf16>) {
gpu.func @test_prefetch_nd_vc(%src: memref<24x32xf16>) {
// CHECK: %[[R0:.*]] = xegpu.create_nd_tdesc %[[arg0]][0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
@@ -104,24 +97,17 @@ gpu.func @test_create_update_nd_tdesc_vc(%src: memref<24x32xf32>) {
// CHECK: gpu.func @test_create_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- gpu.return
-}
-
-// CHECK: gpu.func @test_create_tdesc_vc_1(%[[arg0:.*]]: memref<?xf32, 3>) {
-gpu.func @test_create_tdesc_vc_1(%src: memref<?xf32, 3>) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32, 3> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
gpu.return
}
// CHECK: gpu.func @test_prefetch_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_prefetch_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ // CHECK: xegpu.prefetch %[[R0]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
gpu.return
}
@@ -129,12 +115,12 @@ gpu.func @test_prefetch_vc(%src: ui64) {
gpu.func @test_load_gather_vc(%src: ui64) {
//CHECK: %[[cst:.*]] = arith.constant dense<true> : vector<4xi1>
%0 = arith.constant dense<1>: vector<4xi1>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
- //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1> -> vector<2x4xf32>
- %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
- : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> -> vector<2x4xf32>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ //CHECK: %[[R1:.*]] = xegpu.load %[[R0]], %[[cst]] <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>
+ //CHECK-SAME: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> -> vector<4x2xf32>
+ %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}>
+ : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1> -> vector<4x2xf32>
gpu.return
}
@@ -142,23 +128,23 @@ gpu.func @test_load_gather_vc(%src: ui64) {
gpu.func @test_store_scatter_vc(%src: ui64) {
//CHECK: %[[c0:.*]] = arith.constant dense<true> : vector<4xi1>
%0 = arith.constant dense<1>: vector<4xi1>
- //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<2x4xf32>
- %1 = arith.constant dense<2.9>: vector<2x4xf32>
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
- //CHECK-SAME: vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>, vector<4xi1>
- xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>, transpose}>
- : vector<2x4xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1>
+ //CHECK: %[[c1:.*]] = arith.constant dense<2.900000e+00> : vector<4x2xf32>
+ %1 = arith.constant dense<2.9>: vector<4x2xf32>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ //CHECK: xegpu.store %[[c1]], %[[R0]], %[[c0]] <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>
+ //CHECK-SAME: vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1>
+ xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<write_back>, l2_hint = #xegpu.cache_hint<uncached>}>
+ : vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1>
gpu.return
}
// CHECK: gpu.func @test_create_update_tdesc_vc(%[[arg0:.*]]: ui64) {
gpu.func @test_create_update_tdesc_vc(%src: ui64) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24]: ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
- //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2 : i64>>
- %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %arg0 [0, 8, 16, 24] {chunk_size = 2 : i64} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ //CHECK: %[[R1:.*]] = xegpu.update_offset %[[R0]], [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
+ %2 = xegpu.update_offset %1, [32, 32, 32, 32] : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
gpu.return
}
@@ -179,10 +165,10 @@ gpu.func @test_dpas_vc_with_packed_b(%a : vector<8x16xf16>, %b: vector<8x16x2xf1
// CHECK: gpu.func @test_atomic_rmw(%[[arg0:.*]]: ui64, %[[arg1:.*]]: vector<16xf32>, %[[arg2:.*]]: vector<16xi1>)
gpu.func @test_atomic_rmw(%src: ui64, %value : vector<16xf32>, %mask : vector<16xi1>) {
- //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>
- %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>
- //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
- xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.scatter_tdesc_attr<>>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
+ //CHECK: %[[R0:.*]] = xegpu.create_tdesc %[[arg0]] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>
+ %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]: ui64 -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>
+ //CHECK: %[[R1:.*]] = xegpu.atomic_rmw addf %[[R0]], %[[arg2]], %[[arg1]] : !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
+ xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
gpu.return
}
diff --git a/mlir/test/Dialect/XeGPU/invalid.mlir b/mlir/test/Dialect/XeGPU/invalid.mlir
index 193dae352e3707..7ef50bb2b5fadf 100644
--- a/mlir/test/Dialect/XeGPU/invalid.mlir
+++ b/mlir/test/Dialect/XeGPU/invalid.mlir
@@ -15,20 +15,6 @@ func.func @test_create_nd_tdesc_vc_2(%src: memref<24x32xf32>) {
return
}
-// -----
-func.func @test_create_nd_tdesc_vc_3(%src: memref<2x24x32xf32, 3>) {
- // expected-error at +1 {{SLM is not supported for 2D Block TensorDesc}}
- %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<8x16xf32, #xegpu.block_tdesc_attr<memory_space = slm>>
- return
-}
-
-// -----
-func.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32, 3>) {
- // expected-error at +1 {{Memory space mismatch}}
- %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32>
- return
-}
-
// -----
func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) {
%1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
@@ -40,10 +26,10 @@ func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) {
// -----
func.func @test_prefetch_nd_vc_2(%src: memref<24xf16>) {
%1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7]
- : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>>
+ : memref<24xf16> -> !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr<scattered=true>>
// expected-error at +1 {{Expects a non-scattered TensorDesc}}
xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}>
- : !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>>
+ : !xegpu.tensor_desc<8xf16, #xegpu.tdesc_attr<scattered=true>>
return
}
@@ -58,11 +44,11 @@ func.func @test_load_nd_vc_1(%src: memref<8x16xf16>) {
// -----
func.func @test_load_nd_vc_2(%src: memref<16xf16>) {
- %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14]
- : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2}
+ : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>>
// expected-error at +1 {{Expects a non-scattered TensorDesc.}}
%2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}>
- : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> -> vector<8x2xf16>
+ : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>> -> vector<8x2xf16>
return
}
@@ -87,28 +73,28 @@ func.func @test_store_nd_vc_1(%dst: memref<24x32xf16>) {
// -----
func.func @test_store_nd_vc_2(%dst: memref<16xf16>) {
%1 = arith.constant dense<1.0>: vector<8x2xf16>
- %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14]
- : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %2 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2}
+ : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>>
// expected-error at +1 {{Expects a non-scattered TensorDesc}}
xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<streaming>}>
- : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>>
return
}
// -----
func.func @test_update_nd_offset_1(%dst: memref<16xf16>) {
- %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14]
- : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %1 = xegpu.create_tdesc %dst[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2}
+ : memref<16xf16> -> !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>>
// expected-error at +1 {{Expects a non-scattered TensorDesc}}
- xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.tdesc_attr<scattered=true>>
return
}
// -----
func.func @test_create_tdesc_vc_1(%src: ui64) {
// expected-error at +1 {{Expects a scattered TensorDesc}}
- %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14]
- : ui64 -> !xegpu.tensor_desc<8xf16>
+ %1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2}
+ : ui64 -> !xegpu.tensor_desc<8x2xf16>
return
}
@@ -116,14 +102,7 @@ func.func @test_create_tdesc_vc_1(%src: ui64) {
func.func @test_create_tdesc_vc_2(%src: ui64) {
// expected-error at +1 {{Incorrect TensorDesc shape}}
%1 = xegpu.create_tdesc %src[0, 2, 4, 6, 8, 10, 12, 14] {chunk_size = 2}
- : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.scatter_tdesc_attr<>>
- return
-}
-
-// -----
-func.func @test_create_tdesc_vc_1(%src: memref<?xf32>) {
- // expected-error at +1 {{Memory space mismatch}}
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : memref<?xf32> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>>
+ : ui64 -> !xegpu.tensor_desc<8x4xf16, #xegpu.tdesc_attr<scattered = true>>
return
}
@@ -137,9 +116,9 @@ func.func @test_prefetch_vc_1(%src: memref<24x32xf16>) {
// -----
func.func @test_prefetch_vc_2(%src: ui64) {
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
// expected-error at +1 {{invlid l1_hint: #xegpu.cache_hint<write_back>}}
- xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
return
}
@@ -156,11 +135,11 @@ func.func @test_load_gather_vc_1(%src: memref<24x32xf16>) {
// -----
func.func @test_load_gather_vc_2(%src: ui64) {
%0 = arith.constant dense<1>: vector<4xi1>
- %1 = xegpu.create_tdesc %src[0, 8, 16, 24] : ui64
- -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %1 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2} : ui64
+ -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
// expected-error at +1 {{invlid l1_hint: #xegpu.cache_hint<write_back>}}
%2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<write_back>}>
- : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1>
+ : !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1>
-> vector<4x2xf32>
return
}
@@ -180,11 +159,11 @@ func.func @test_store_scatter_vc_1(%src: memref<24x32xf32>) {
func.func @test_store_scatter_vc_2(%src: ui64) {
%0 = arith.constant dense<1>: vector<4xi1>
%1 = arith.constant dense<2.9>: vector<4x2xf32>
- %2 = xegpu.create_tdesc %src[0, 8, 16, 24]
- : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>
+ %2 = xegpu.create_tdesc %src[0, 8, 16, 24] {chunk_size = 2}
+ : ui64 -> !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>
// expected-error at +1 {{invlid l1_hint: #xegpu.cache_hint<streaming>}}
xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<streaming>}> : vector<4x2xf32>,
- !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1>
+ !xegpu.tensor_desc<4x2xf32, #xegpu.tdesc_attr<scattered = true>>, vector<4xi1>
return
}
@@ -203,9 +182,9 @@ func.func @test_dpas_vc_2(%a : vector<8x8x2xf16>, %b: vector<8x16x2xf16>) {
}
// -----
-func.func @test_atomic_rmw(%src: ui64, %value : vector<16x4xf32>, %mask : vector<16xi1>) {
- %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] : ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>>
- // expected-error at +1 {{failed to verify that all of {tensorDesc, value, result} have same shape}}
- xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>>, vector<16xi1>, vector<16x4xf32> -> vector<16x8xf32>
- return
+func.func @test_atomic_rmw(%src: ui64, %value : vector<16x8xf32>, %mask : vector<16xi1>) {
+ %1 = xegpu.create_tdesc %src[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] {chunk_size = 8}: ui64 -> !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr<scattered = true>>
+ // expected-error at +1 {{failed to verify that all of {tensorDesc, mask, value, result} have same shape}}
+ xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.tdesc_attr<scattered = true>>, vector<16xi1>, vector<16x8xf32> -> vector<16x8xf32>
+ gpu.return
}
\ No newline at end of file
More information about the Mlir-commits
mailing list