[Mlir-commits] [mlir] [mlir][linalg] Vectorization support for convolution of i1 type (PR #109480)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Fri Sep 20 14:16:06 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Nirvedh Meshram (nirvedhmeshram)

<details>
<summary>Changes</summary>

Normally convolutions present with the following linalg op region
```
^bb0(%arg14: i4, %arg15: i4, %arg16: i4):
  %17 = arith.muli %arg14, %arg15 : i4
  %18 = arith.addi %arg16, %17 : i4
  linalg.yield %18 : i4
  ```
  However, for i1 due to strength reduction we get something like
  ```
  ^bb0(%arg14: i1, %arg15: i1, %arg16: i1):
  %17 = arith.andi %arg14, %arg15 : i1
  %18 = arith.ori %arg16, %17 : i1
  linalg.yield %18 : i1
  ```
  This PR updates the logic to support this region for i1 types.

---
Full diff: https://github.com/llvm/llvm-project/pull/109480.diff


2 Files Affected:

- (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+23-11) 
- (modified) mlir/test/Dialect/Linalg/vectorize-convolution.mlir (+29) 


``````````diff
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index a376afa5ddab12..1cdf937742fd2e 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -2947,12 +2947,14 @@ struct Conv1DGenerator
 
     if (!setOperKind(reduceOp))
       return;
-    auto maybeKind = getCombinerOpKind(reduceOp);
-    if (!maybeKind || (*maybeKind != vector::CombiningKind::ADD &&
+    maybeKind = getCombinerOpKind(reduceOp);
+    // Typically convolution will have a `Add` CombiningKind but for i1 type it
+    // can get strength reduced to `OR` which is also supported.
+    if (!maybeKind || ((*maybeKind != vector::CombiningKind::ADD &&
+                        *maybeKind != vector::CombiningKind::OR) &&
                        (oper != Pool || !isSupportedPoolKind(*maybeKind)))) {
       return;
     }
-
     auto rhsRank = rhsShapedType.getRank();
     switch (oper) {
     case Conv:
@@ -3156,9 +3158,9 @@ struct Conv1DGenerator
                                                    lhsVals[linearIndex(kw, w)],
                                                    rhsVals[kw], resVals[w]);
           } else {
-            resVals[w] = conv1dSliceAsContraction(rewriter, loc,
-                                                  lhsVals[linearIndex(kw, w)],
-                                                  rhsVals[kw], resVals[w]);
+            resVals[w] = conv1dSliceAsContraction(
+                rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw],
+                resVals[w], maybeKind);
           }
           break;
         case Pool:
@@ -3226,18 +3228,24 @@ struct Conv1DGenerator
   }
 
   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
-  Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc,
-                                 Value lhs, Value rhs, Value res) {
+  Value
+  conv1dSliceAsContraction(RewriterBase &rewriter, Location loc, Value lhs,
+                           Value rhs, Value res,
+                           std::optional<vector::CombiningKind> maybeKind) {
     vector::IteratorType par = vector::IteratorType::parallel;
     vector::IteratorType red = vector::IteratorType::reduction;
     AffineExpr n, w, f, c;
     bindDims(ctx, n, w, f, c);
     lhs = promote(rewriter, loc, lhs, res.getType());
     rhs = promote(rewriter, loc, rhs, res.getType());
-    return rewriter.create<vector::ContractionOp>(
+    auto ContrationOp = rewriter.create<vector::ContractionOp>(
         loc, lhs, rhs, res,
         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
         /*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red});
+    if (maybeKind) {
+      ContrationOp.setKind(*maybeKind);
+    }
+    return ContrationOp;
   }
 
   // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel
@@ -3627,6 +3635,7 @@ struct Conv1DGenerator
   int strideW, dilationW;
   Value lhsShaped, rhsShaped, resShaped;
   ShapedType lhsShapedType, rhsShapedType, resShapedType;
+  std::optional<vector::CombiningKind> maybeKind;
 
   // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops.
   // Returns true iff it is a valid conv/pooling op.
@@ -3642,7 +3651,8 @@ struct Conv1DGenerator
     switch (numBlockArguments) {
     case 1: {
       // Will be convolution if feeder is a MulOp.
-      // Otherwise, if it can be pooling.
+      // A strength reduced version of MulOp for i1 type is AndOp which is also
+      // supported. Otherwise, it can be pooling.
       auto feedValIt = llvm::find_if_not(reduceOp->getOperands(),
                                          llvm::IsaPred<BlockArgument>);
       Operation *feedOp = (*feedValIt).getDefiningOp();
@@ -3650,7 +3660,9 @@ struct Conv1DGenerator
         oper = Pool;
         isPoolExt = true;
         poolExtOp = feedOp->getName().getIdentifier();
-      } else if (!(isa<arith::MulIOp, arith::MulFOp>(feedOp) &&
+      } else if (!((isa<arith::MulIOp, arith::MulFOp>(feedOp) ||
+                    (isa<arith::AndIOp>(feedOp) &&
+                     feedOp->getResultTypes()[0].isInteger(1))) &&
                    llvm::all_of(feedOp->getOperands(), [](Value v) {
                      if (isa<BlockArgument>(v))
                        return true;
diff --git a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
index 93e36a69567bd5..84e790954b4d02 100644
--- a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir
@@ -654,6 +654,35 @@ func.func @conv_1d_nwc_wcf_mixed_int_fp_memref(%input: memref<1x2x3xi8>, %filter
 // CHECK: %[[CONTRACT:.+]] = vector.contract {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "reduction"], kind = #vector.kind<add>} %[[CAST0]], %[[CAST1]], %[[READ2]]
 // CHECK: vector.transfer_write %[[CONTRACT]], %arg2[%[[I0]], %[[I0]], %[[I0]]]
 
+// -----
+
+func.func @conv2d_i1_i1_i1(%arg0: tensor<1x8x6xi1>, %arg1: tensor<8x8x1xi1>, %arg2: tensor<1x8x6xi1>) -> tensor<1x8x6xi1> {
+  %0 = linalg.conv_1d_ncw_fcw 
+  {dilations = dense<1> : vector<1xi64>, strides = dense<1> : vector<1xi64>}
+   ins(%arg0, %arg1 : tensor<1x8x6xi1>, tensor<8x8x1xi1>) 
+   outs(%arg2 : tensor<1x8x6xi1>) -> tensor<1x8x6xi1>
+  return %0 : tensor<1x8x6xi1>
+}
+
+// CHECK-LABEL:  func @conv2d_i1_i1_i1
+// CHECK-SAME:   (%[[INPUT:[0-9a-z]+]]: tensor<1x8x6xi1>, %[[FILTER:[0-9a-z]+]]: tensor<8x8x1xi1>, %[[OUTPUT:[0-9a-z]+]]: tensor<1x8x6xi1>) -> tensor<1x8x6xi1> {
+// CHECK-DAG:    %[[I0:.+]] = arith.constant 0 : index
+// CHECK-DAG:    %[[FALSE:.+]] = arith.constant false
+// CHECK-DAG:    %[[READ0:.+]] = vector.transfer_read %[[INPUT]][%[[I0]], %[[I0]], %[[I0]]], %[[FALSE]]
+// CHECK-DAG:    %[[READ1:.+]] = vector.transfer_read %[[FILTER]][%[[I0]], %[[I0]], %[[I0]]], %[[FALSE]]
+// CHECK-DAG:    %[[READ2:.+]] = vector.transfer_read %[[OUTPUT]][%[[I0]], %[[I0]], %[[I0]]], %[[FALSE]]
+// CHECK-DAG:    %[[TREAD0:.+]] = vector.transpose %[[READ0]], [0, 2, 1] : vector<1x8x6xi1> to vector<1x6x8xi1>
+// CHECK-DAG:    %[[TREAD1:.+]] = vector.transpose %[[READ1]], [2, 1, 0] : vector<8x8x1xi1> to vector<1x8x8xi1>
+// CHECK-DAG:    %[[TREAD2:.+]] = vector.transpose %[[READ2]], [0, 2, 1] : vector<1x8x6xi1> to vector<1x6x8xi1>
+// CHECK:        %[[EXTRACT:.+]] = vector.extract %[[TREAD1]][0] : vector<8x8xi1> from vector<1x8x8xi1>
+// CHECK:        %[[CONTRACT:.+]] = vector.contract {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "reduction"], kind = #vector.kind<or>} 
+// CHECK-SAME:   %[[TREAD0]], %[[EXTRACT]], %[[TREAD2]] : vector<1x6x8xi1>, vector<8x8xi1> into vector<1x6x8xi1>
+// CHECK:        %[[TCONTRACT:.+]] = vector.transpose %[[CONTRACT]], [0, 2, 1] : vector<1x6x8xi1> to vector<1x8x6xi1>
+// CHECK:        %[[RESULT:.+]] = vector.transfer_write %[[TCONTRACT]], %[[OUTPUT]][%[[I0]], %[[I0]], %[[I0]]] 
+// CHECK:        return %[[RESULT]] : tensor<1x8x6xi1>
+
+
+
 // -----
 
 func.func @pooling_nwc_sum_memref_1_2_1_3(%input: memref<4x4x3xf32>, %filter: memref<1xf32>, %output: memref<4x2x3xf32>) {

``````````

</details>


https://github.com/llvm/llvm-project/pull/109480


More information about the Mlir-commits mailing list